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Abstract:

Perspective projection is generally accepted as the ideal model of image formation. Many recent
algorithms, and many recent judgements about the relative merits of different algorithms, depend
on this assumption. However, perspective projection represents only the front half of the viewing
sphere and it distorts the shape and intensity of objects unless they lie near the optical axis. It is
only one of several projections used in lens design and it does not accurately model the behavior
of many real lenses. It works well only for narrow-angle images.

This paper surveys the properties of several alternative models of image formation. A model
based on stereographic projection of the viewing sphere is shown to be a better general-purpose
imaging model than perspective projection. The new model can represent wider fields of view and
more closely approximates real wide-angle lenses. It preserves a suitable range of shape properties,
including local symmetries. It approximates narrow-angle perspective locally, enabling local affine
features to be used throughout the field of view.

1 Introduction

Perspective projection is generally accepted as the ideal model of image formation. Considerable
effort has been spent deriving mathematical results (e.g. invariant properties) for perspective
projection. But is perspective the right model for imaging?

Ideally, a camera model should:

o Be a close match to the behavior of real camera systems, and

e Have convenient mathematical properties.

For narrow-angle lenses, perspective seems to satisfy both of these criteria.

However, perspective projection is not a convenient representation for wide-angle images, i.e.
images covering a field of view over 90 degrees (Kingslake 1992). A perspective image cannot cover

!This research was carried out at the Department of Computer Science, University of Iowa. It was supported in
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Figure 10 3D lines look straight m perspeetive projection (top right ) hut enrved o stercographic
projection (top left). Spheres look civenlar in stereograplue projection (bottom left) and elliptica]
1 perspective projection {botrom rieht)

more than 180 degrees, less than the field of view of sowwe lenses. L fact, real perspective lenses are
Imited to a field of view less than 140 degrees becanse insufficient light reaches locations further
from the optical axis. In an ideal perspective image. objects change shape as they move across
the field of view. In particnlar, symmetric objects appear asymmetrical when they are in the
periphery of the iinage (figures 1 and 2), (Lin et al. 1993). In practice, real wide-angle lenses have
substantial “barrel distortion,” deviating from ideal perspective projection in a way that decreases

the distortion of symmetric objects but makes straight lines appear bent (feure 3).

These problems have received little attention in computer vision, because researchers,
with Limited exceptions (Kato et al, 1994, Oh and Hall 1989, Stevenson and Fleck 1994). have
avoided wide-angle lenses. Object recognition and “self-calibration™ algorithms use normal to
narrow-angle lenses (field of view less than 55 degrees), because they asswme that perspective
projection 1s approximately orthographic (Huttenlocher 1988, Lin et al. 1993, Mukherjee 1994,
Pillow et al. 1994, Zerroug and Nevatia 1993) or becanse they assimme no radial distortion is present
(Dron 1993. Fangeras 1992, Forsyth ot al. 1992, Forsyrhv ev al. 1994, Hartley 1992, Liu et al. 1993.
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Figure 20 Rotationally synnncetric objeets appear locally symunetric in stereographic projection
(left). but not in perspective projection (right).

Fignre 3: The output of our Computar 2.6 mm lens (NEC NXI8A Camera) is midway between
stereographic and perspective projection.  Spheres are slightly elliptical and lines bend by 10
dlegrees.
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Rothwell 1992). Calibration algorithms incorporating models of radial distortion have been tested
on lenses with fields of view less than 78 degrees, typically less than 65 degrees (Du and Brady 1993,
Fiala 1994, Tsai 1986, Weng et al 1992). Our experiments (Stevenson and Fleck 1994 ) suggest that
their low-order polynomial models of the radial distortion function are inadequate for wide-angle
lenses.

It is time to re-examine whether perspective projection is the most suitable imaging model.
Perspective projection is only one of several mathematically convenient projections consistent with
the optics of real camera systems. This paper will show that one of these alternative models,
based on stereographic projection of the viewing sphere, is a better choice for general-purpose
imaging. The stereographic projection model represents almost the entire field of view, reduces
intensity drop-off in the periphery of the image, and more closely approximates the geometry of
real wide-angle lenses.

Stereographic projection preserves circularity and, thus, projects 3D local symmetries onto 2D
local symmetries. Perspective properties such as straightness and bitangency are not preserved
globally. However, for small regions anywhere in a stereographic image, the projection from 3D
approximates perspective projection near the optical axis. Therefore, perspective properties are
preserved approximately over small regions. Furthermore, affine (scaled orthographic) representa-
tions for small compact features can be used throughout the field of view.

This paper will begin with three sections motivating the usefulness of wide-angle images and
introducing the alternative imaging models. Sections 5-8 will discuss properties of the imaging
models in detail. Section 9 explains why calibration information is useful in interpreting images
and why strange-looking images are not necessarily bad. Finally, the conclusions are presented in
section 10.

2  Why bother with wide-angle lenses?

Although neglected in computer vision, wide-angle lmages are widely used in photography and in
biological vision. A wide field of view simplifies four types of tasks:

e Mapping the local environment for visual search (Wixson and Ballard 1994), planning ac-
tions, navigation (Kato et al. 1994, Oh and Hall 1989), and detection of hazards (e.g. on-
coming moving objects),

e Obtaining a representative sample of colors for color constancy (Forsyth 1990) or a large set
of features for identifying one’s current location,

e Photographing large objects (e.g. buildings, landscapes), nearby objects, and objects in
confined spaces, and

¢ Robust analysis of egomotion.

The first requirement explains why surveillance cameras typically use wide-angle lenses, why prey
animals may have horizontal ficlds of view as large as 360 degrees, and why a 140 degree field of
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Figure 4: Perspective is exaggerated in wide-angle images: the head looks too large compared to
the hand, the forward parts of the face are enlarged. Straight lines (e.g. the edges of the monitor,
the power conduit on the far right) may be bent.

view 1s required for an lowa driver’s license (Iowa 1990). (The normal human binocular field of
view 1s about 180 degrees horizontally and 120 degrees vertically.)

Peripheral areas of the visual field play an important role in determining egomotion, because
objects near the center of the field of view move in the same direction under camera pan (or tilt) as
they do when the camera is translated horizontally (or vertically). It is easy to tell when there is a
translational component to the motion—objects at different depths move different distances—bnt
it 1s difficult to reliably estimate how much of the motion is translational. In peripheral areas,
objects move in different directions under the two components of camera motion, making it easier
to separate translation from pan and tilt.

Wide-angle lenses are frequently used in TV news photography, particularly in photographing
indoor scenes. These lenses are also used in some TV ad campaigns to make the actors seem “in
your face.” The output of a wide-angle lens has three distinctive features:

e Background objects seem implausibly far away or implausibly small, compared to foreground
objects,

e The front parts of faces (e.g. noses) seem unnaturally prominent, and

e Straight 3D lines near the edges of the image may appear curved.

Figure 4 shows extreme examples of these effects.

The images in this paper were produced by an ordinary, inexpensive C-mount lens, whose field of
view is 116.5 degrees horizontally. We calibrated its radial distortion using techniques described in
(Stevenson and Fleck 1994). This field of view is not at the limit of what is commercially available:
C-mount lenses have fields of up to 138 degrees, 35mm lenses up to 220 degrees (Hedgecode 1993,
Kingslake 1989, Peterson 1991). Wide-angle images can also be assembled from two or more images
(Hartley 1994).
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Figure 5: A point X on the viewing sphere can be represented by its angular distance o from the
optical axis and its angle 3 around the optical axis. Projection onto the plane preserves 3 and puts
the point at distance p(«) from the image center.

The theoretical imaging models used in computer vision must be able to handle wide-angle
images, so that we can emulate biological systems and so that we can process the full range of
available images.

3 Generalized imaging model

The imaging geometry of most cameras used in computer vision and photography, though not
acrial slit cameras (Hartley and Gupta 1994, Kingslake 1992), can be described as a two-stage pro-
cess: perspective projection of the 3D world onto a unit sphere (the viewing sphere) followed by
a projection 7 of the sphere onto the image plane. The spherical image is convenient for theo-
retical analysis, because it represents the entire field of view uniformly (Cipolla and Blake 1992,
Horn 1986, Malik and Rosenholtz 1994). However, a flat image simplifies storage of digitized im-
ages, low-level image processing (e.g. convolution), geometry, and film manufacture. Although it is
not generally known in computer vision, several choices for 7 are used in optics and in mathematics.

This paper will consider only projections rotationally symmetric about the optical axis (see
appendix A for panoramic cameras). Assume that the viewing sphere is a unit sphere centered at
the origin and that C' = (0,0,1) is the direction of gaze. A point X = (z,y,z) on the viewing
sphere can be represented by two angles (figure 5). The angular distance from C is o = atan(q, z),
where ¢ = \/z* + y?. The angular position around C' is 3 = atan(y, z). Standard camera systems
then map X onto the point at distance p(a) from the origin and angle 3 from horizontal.

There are at least five reasonable choices for the radial projection function p:

p(a) = ktana (perspective projection)
pla) = ktan(§) (stereographic projection)

p(a) = ka (equidistant projection)



Perspective Projection: the Wrong Imaging Model

perspective projection
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Figure 6: IFive radial projection functions, mapping the angles [0,180] degrees onto distances from
the image center, normalized to have the same value at 45 degrees.

pla) = ksina (sine-law projection)

pla) = ksin($) (equi-solid angle projection)

where & is a scaling constant. Graphs of these functions are shown in figure 6. Geometrical
constructions for three of them are shown in figure 7.

In theory, narrow angle and some wide-angle lenses are designed to emulate perspective projec-
tion. Some wide-angle and all extremely wide-angle (> 140° field of view) lenses are designed to em-
ulate equidistant, sine law, or equi-solid angle projection (Kingslake 1989, Ray 1994, Smith 1992).
In practice, designing a lens involves choosing a compromise between several competing goals: pro-
Jjection geometry, size, even illumination, sharp focus, and cost. Therefore, the radial projection
function for a real lens may lie almost anywhere in the range between perspective and sine-law
projection (Smith 1992), as illustrated in figure 8 from (Stevenson and Fleck 1994). Thus, wide-
angle lenses must be calibrated for precision applications (Smith 1992, Stevenson and Fleck 1994,
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Figure 7: Geometrical constructions of the image of a point X under sine law projection (left),
perspective projection (middle), and stereographic projection (right).

Tsal 1986).

Stereographic projection is widely used in mathematics (Berger 1987, Hahn 1994,
Hilbert and Cohn-Vossen 1932) and occasionally in graphics (Hill 1990), shape from shading
(Horn 1986), and cartography (Monmonier 1991). Though known in optics, it is rarely used in
lens design (Ray 1994). However, there do not seem to be any technical obstacles preventing con-
struction of a stereographic lens, if there were a market for one. Furthermore, in the front half of
the field of view (up to 90 degrees from the optical axis), the differences between stercographic,
ecquidistant, and equi-solid angle projection are small, so equidistant or equi-solid angle lenses can
be used as approximate stereographic lenses. Therefore, any of these five projections is a possible
choice for our ideal camera model.

4 Choosing an imaging model

In narrow-angle imaging, images from all five models approximate spherical images, so the choice of
ideal projection function has little practical consequence. Away from the optical axis, however, the
different models become significantly different, in some cases sometimes infinitely different. This
paper will evaluate each projection using three criteria:

e How well it preserves metric properties of the spherical image (angular position and area),

e How wide a field of view it can represent, and

e What shape features it preserves, both globally and locally.

These properties are summarized in table 1.
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Figure 8: Radial projection functions for three lenses (2.6mm C-mount on 1/2" format camera,
4mm and 7.5mm lenses on a Toshiba miniature camera) compared to four idealized projection
models. Each was normalized to have the value 30 at 30 degrees and the line y = z was subtracted.
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Table 1: Properties of projections
(* = approximate)
metric properties max field of view | shapes preserved
perspective 140°/180° straightness
stereographic 250°/360° circles
intersection angles
local shape (*)
equidistant angular position 345°/360°
angular area (*)
equi-solid angle | angular area 360°
angular position (*)
sine law 180°

This analysis serves two purposes. First, it will be used to argue that stercographic projection
is the best choice for a single, general-purpose projection model. Specifically, we will see that

It can represent the full 360 degree field of view: metric distortion and intensity drop-off are

modest within the front half,

It preserves a range of global shape properties analogous to those preserved by perspective

projection, and

The shape of small regions does not depend on their location in the field of view.

Perspective and sine law projection, by contrast, cannot handle very wide fields of view. Equidis-
tant, equi-solid angle, and sine law projection do not preserve powerful shape properties. And, for
all the non-stereographic projections, the shape of a small region changes as it moves across the
field of view.

This analysis can also be used to choose a projection for a particular application. For example,
time to contact equations for round objects have a simpler form in equi-solid angle projection, sym-
metry testing is best done in stereographic projection, and it is easiest to analyze curvature sign
in perspective projection. If calibration information is available, an algorithm may be significantly
simplified by first transforming the image or contours into the appropriate projection. The trans-
formation between perspective and stereographic coordinates is particularly simple (appendix B).
In a specialized application, it may be convenient to choose a lens implementing the projection
most appropriate to the algorithms.

5 Preservation of angular position and area

Equidistant and equi-solid projections are useful in applications which measure angular positions or
angular areas. Traditional applications include maritime naviation (Monmonier 1991), astrophotog-
raphy, and mapping the human visual field (as in opthalmology and psychophysics). In computer
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vision, these projections might be useful for robot navigation (Oh and Hall 1989) or in time to
contact algorithms.

All five projections preserve angular position about the viewing direction (8). Thus, great
circles through €' = (0,0,1) on the viewing sphere project to straight lines in the image. In
addition, equidistant projection preserves the radial angle (). Equidistant and equi-solid angle
projection closely approximate one another (figure 6), particularly in the front half of the visual
field, and so equi-solid angle projection approximately preserves radial angle.

Equi-solid angle projection preserves the area of regions on the spherical image, up to a scaling
constant (Ray 1994). To show this, it is sufficient to consider filled circular regions centered about
the optical axis. Preservation of area for other regions can then be derived by adding and subtracting
filled circular regions, and by using the fact that the projection is rotationally symmetric about the
optical axis.

Consider a filled region R of angular radius « on the (unit) viewing sphere. By standard
geometrical formulas (Beyer 1984), the surface area of R is 2m(1 — cosa). R projects onto a circle
of radius ksin(F) on the image plane. The area of this circle is wk?sin?(4). But sin?(§) = 1=5=a

(a standard trignometric identity). Therefore, the two arcas differ by a constant factor of %i

In other projections, regions near the optical axis appear larger or smaller than those in the
periphery. To calculate the change in area, consider a thin annulus on the viewing sphere, of
angular radius @ and width 2/, centered around the optical axis. Its projection on the image has
area proportional to p*(a + ) — p*(a — B) where p is the radial projection function. In the limit,
as I goes to zero, ignoring scaling constants, this is simply the derivative of p?(a).

For equi-solid angle projection p?(«) = sin?(%), which is equal to %(l — cos«v). Therefore, its
derivative is proportional to sin. To calculate the area of a small region seen at angle «, relative
. N " . . s } - -
to its area if seen at the optical axis, we compare sina to the value of p?(«) for other projections,

1gnoring constant factors,

For equidistant projection, the derivative of p*(«) is proportional to e So the change in area is
proportional to z2—. Similarly, for sine-law projection, the change in area is proportional to cos .
And, for perspective projection, the change in area is proportional to EFSIT*-_Q For stereographic

projection, the derivative of p?(a) is proportional to %;13(—(2%. So the change in area from the
i 2

o

o . . F : ; sin( %) 5 ] P T oo Wi
viewing sphere to the image is proportional to ;IEES%{—?) By trigonometric identities, this is

-'—Q) which is proportional to { .

proportional to e (T+cosa)"

These formulas reveal the extent of area distortion in the other projections. Equidistant pro-
Jection approximately preserves area over much of the field of view because sina is approximately
proportional to c. Stereographic projection changes area by only a factor of 4 in the front half of
the field of view, but the areas are infinitely expanded at 180 degrees from the viewing direction.
Perspective and sine-law projection have unbounded distortions of area at 90 degrees from the
viewing direction: perspective expands area infinitely and sine-law collapses regions to zero arca.
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6 Field of view

The maximum field of view represented by an imaging model is determined by two factors. First, the
mathematical projection must be one-to-one and continuous throughout the field of view. Second,
it must be possible to construct a physical lens implementing the projection. Lens construction is
primarily limited by the need to prevent the peripheral areas of the image from becoming much
darker than the central areas. Small changes in illumination can be removed by calibration or
tolerated by making vision algorithms insensitive to them. However, if large differences are present
(e.g. a factor of 20), features in the periphery cannot be made visible without saturating the center
of the image.

The five projections have different topological properties. Stereographic, equidistant, and equi-
solid angle projections map nearly all the viewing sphere one-to-one onto the plane (see figure 6).
Thus, they can be used to construct extremely wide-angle images for applications such as egomotion
analysis or navigation. Perspective and sine-law projection are one-to-one only on the front half of
the viewing sphere, so their field of view is limited to 180 degrees. This limitation applies whether
the image is produeced by a real lens or synthesized (e.g. by pasting together several smaller images).

In addition, in a real camera system, the image of a patch of Lambertian surface typically
appears brighter if it lies near the optical axis and less bright when it is in the periphery of the
field of view. This intensity drop-off is due to the fact that

o the lens transmits less of the light from solid angles in the periphery, and

e solid angles in the periphery cover more image area than solid angles near the optical axis.

Minimizing such variation in intensity is an important goal in lens design.

Consider a small patch P of 3D Lambertian surface lying at angle «v from the optical axis of
the camera. If the lens projects the world onto a spherical image surface, locations in the image
of P have intensity values proportional to cos cv. This drop-off occurs because the lens aperture, as
seen from P, is tilted at angle a. Thus, its apparent area is reduced (foreshortened) and fewer of
the rays coming from P enter the lens (more miss the lens and go off into space). Vignetting by
other components of the lens may further alter the amount of light transmitted (Kingslake 1989).

Conservation of energy implies that intensity values drop when light from a given solid angle
is spread out over a larger image area. So, the intensity drop-off for flat images is calculated by
dividing the intensity values for a spherical image plane by the change in area equations derived in
section 5. For example, the change in a,u’:a for perspective projection is proportional to —l-;— S0
the 1nten€1ty values are proportional to cos* ce. This formula is well-known, though nqually d(,llV(’d
in a different way (Horn 1986, Kingslake 1989, Kingslake 1992, Ray 1994, Smith 1992). This steep
drop-off in intensities limits the field of view of ideal perspective lenses to about 120-125 degrees,

corresponding to a reduction in intensity by a factor of 16-20 (Ray 1994).

By adjusting the details of the optics, the amount of light transmitted by the lens can be made
nearly uniform. For example, the front elements of wide-angle lenses are curved and coma may be
deliberatedly introduced, so that more of the light from peripheral objects can enter and exit the
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lens (Kingslake 1989, Ray 1994, Smith 1992). The illumination in the center of the image can be
reduced using graduated neutral density filters (Ray 1994). Thus, the practical limit for perspective
lenses is a cos® & drop-off in illumination, which allows a field of view up to 140 degrees (Ray 1994).

The other four projections reduce the image area covered by peripheral regions. Therefore,
lenses implementing these projections have a slower drop in intensities and larger maximum fields
of view. Depending on whether the amount of light transmitted by the lens is uniform across the
field of view or varies as cos a, perfectly even illumination is produced by either equi-solid angle
projection or sine-law projection (Kingslake 1989, Ray 1994). Equidistant projection has a very
slow intensity drop-off, between 552“ and ”’—"QQ-‘M = s'—"z{i—n-‘l For stereographic lenses, the drop-off
is between (1 + cosa)? and cos ao(1 + cos a)?. This imposes a maximum field of view of 250 degrees,

larger than that of existing lenses.

Thus, three projections—equidistant, stereographic, and equi-solid angle—support very wide
fields of view. Sine-law projection is limited to a 180 degree field of view. Perspective projection
is limited to a 180 degree field of view for synthetic images, and a 140 degree field of view for real
images.

7 Global shape

Because they are continuous, all five projections preserve basic curve features such as curve inter-
sections, tangency, and sharp corners. However, only two projections preserve important aspects
of the shape of regions. Perspective projection preserves straightness: it maps arcs of great cir-
cles on the viewing sphere (e.g. the images of 3D lines) onto straight lines, line segments, and
rays in the image. Stercographic projection preserves circularity; it maps circles on the view-
ing sphere (e.g. images of 3D spheres) onto circles and lines on the image plane (appendix C).
Stereographic projection is also conformal: it preserves the angle at which two curves intersect
(Berger 1987, Hahn 1994, Hilbert and Cohn-Vossen 1932).

Shape analysis is typically based on the outline of an object (possibly including internal bound-
aries). In order to be useful in most computer vision applications, particularly object recognition,
a feature of the outline’s shape must have three properties:

e Frequent visibility: the feature must appear on the outline from many viewpoints.

e Good projection: whenever the feature is visible, it must appear in similar form on the viewing
sphere.

2D invariance: the feature must appear in similar form on the flat image, regardless of how
the viewing sphere is projected onto the image.
Clearly, 2D invariance is only possible within a restricted class of projections, such as all stereo-
graphic projections of the viewing sphere or all perspective projections.

To avoid special cases in the following discussion, lines and planes will be considered degenerate
types of circles and spheres. When convenient, flat 3D objects will be treated as having a non-
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zero thickness and sharp corners will be treated as slightly rounded. Finally, the discussion will
consider only idealized, exact features, with the understanding that the results apply approximately
to features approximately matching these models.

7.1 Perspective

Because perspective projection preserves straightness, three basic features are used for recognition
in perspective images (Forsyth et al. 1992, Huttenlocher 1988, Mokhtarian and Mackworth 1986,
Rothwell 1992, Kriegman 1993, Liu et al. 1993): lines, curvature zero-crossings, and bitangents.
Specifically, a 3D line projects onto a line in the image. If a 3D surface is tangent to a plane at two
points, the images of these points will be tangent to a common line whenever they both appear
on the outline. If the tangent plane at some point A crosses the surface, the tangent line at the
image of A will cross the outline whenever A lies on the outline (except for an infinitely small set
of degenerate viewpoints).

For a point A to appear on the outline, it must meet the following basic visibility conditions:

(1) The ray from the lens center to A is tangent to the surface,
(2) The curvature of the surface along this ray is positive at A (so it is not occluded locally),
(3) No other part of the surface lies in front of A, and

(4) The angular position of A lies within the camera’s field of view.

It is relatively easy to understand when conditions (2)-(4) will be satisfied: interesting questions
about how frequently a feature will be visible typically concern condition (1).

A single curvature zero-crossing or bitangent in 3D is frequently visible only if it lies on a
sharp edge. In order for a smooth 3D surface to frequently generate a particular 2D feature, it
must contain an infinite family of 3D features. For example, if a rotationally symmetric object
has a concavity in its outline, it will have a rotationally symmetric family of bitangent planes
“capping oftf” the concavity. From any particular viewpoint, at most two representatives of the
family generate bitangents of the outline. The family is visible from many viewpoints, in the sense
that two of its members are visible.

T'wo representatives from a rotationally symmetric family of bitangents are sufficient for re-
constructing the projection of the axis of symmetry (Liu et al. 1993). Each pair also defines two
viewpoint-invariant points along the axis. The cross-ratio of four such points remains constant
for all views of the object and can be used for recognition (Forsyth et al. 1992, Liu et al. 1993).
The weak link in this method is that existing algorithms for pairing corresponding bitangents
(Liu et al. 1993) assume the 2D outline is approximaiely symmetric, which is true only in narrow-
angle images.
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7.2 Stereographic

Because stereographic projection preserves circularity, it preserves local symmetry. A group
of points on a planar or spherical image are said to have a local symmelry or be a
symmetry group if there is a circle (the symmetry circle) tangent to the contour at all
points in the set (Blum and Nagel 1978, Brady 1983, Brady and Asada 1984, Bruce et al. 1985,
Giblin and Brassett 1985). Similarly, a set of points on a 3D surface have a local symme-
bry if there is a sphere (the symmetry sphere) tangent to the surface at all points in the set
(Bruce et al. 1985, Giblin and O’Shea 1990). For example, the points in any cross-section of a
rotationally symmetric object form a symmetry group.

A symmetry group of a smooth 3D surface appears as 2D symmetry (both on the viewing sphere
and in the stereographic image) whenever two of its points meet the basic visibility conditions from
section 7.1. Symmetry groups containing only two points (e.g. most of those in flat objects) rarely
generate 2D symmetries, because they rarely satisfy condition (1). A larger 3D symmetry group,
however, may generate a 2D symmetry visible in many viewpoints. For example, a cross-section of
a surface of rotation is frequently visible as a symmetry (appendix D).

Objects containing extended families of local symmetries visible from many viewpoints include:

A sphere, partial sphere, or ellipsoid,
o A surface of rotation,

¢ A surface formed by sweeping a sphere along a space curve, with or without smooth changes
in the sphere’s radius (Pillow et al. 1994),

A partial surface of rotation containing sections on opposite sides of the axis of rotation,
e Complex objects containing the above components, and

e Objects approximating the above models (e.g. fingers, hexagonal pencils, straight homoge-
nous generalized cylinders with fat elliptical cross-sections).

When a 3D symmetry generates a 2D symmetry of the outline, the 2D symmetry circle is the
projection of the 3D symmetry sphere. However, the center of the 2D circle is not, in general, the
projection of the center of the 3D circle. For example, for a circle of angular radius 20 degrees,
located at 60 degrees from the optical axis, the projection of the 3D center is displaced from the
2D center by 10% of the 2D radius. In fact, none of the alternative symmetry centers proposed
by previous authors (Blum and Nagel 1978, Brady 1983, Brady and Asada 1984, Bruce et al. 1985,
Giblin and Brassett 1985, Leyton 1988) is preserved under the projection from 2D to 3D.

Viewpoint invariant construction of the axis is possible, however, for an elongated region with
a straight axis. If the axis of the 3D region is straight, it projects into the stereographic image as
a circle C. For each local symmetry along the axis, C must intersect the 2D symmetry circle at a
right angle. This is clearly true if C' projects onto a straight line through the camera center. The
general result follows from the fact that stereographic projection preserves the angle at which two
curves intersect on the viewing sphere.
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Now, choose three symmetry groups belonging to the region. (The choice does not need to be
viewpoint invariant.) Except for degenerate cases, there is a 1D family of circles perpendicular to
a fixed pair of circles (Hahn 1994) and exactly one circle intersecting all three symmetry circles at
right angles. This circle must be the image of the 3D symmetry axis. This construction should
work approximately for short sections of regions whose axes curve only gently.

Suppose that we identify four viewpoint invariant features which lie along a line L in 3D. The
cross-ratio of their locations in the stereographic image is invariant under changes in viewpoint.* If
L projects onto a straight line through the image center, the result for stereographic projection can
be derived from the result for perspective projection using the transformation in appendix B. The
general result follows from the fact that cross-ratios are preserved under transformations between
two stereographic projections of the viewing sphere (the Mdbius transformations) (Hahn 1994).
The weak link in this method is detecting a wide enough class of viewpoint-invariant points.

7.3 Wrap-up

Thus, stereographic projection preserves a set of global shape features similar to those preserved
by perspective projection, with a similar range of viewpoint-invariant properties. Perspective pro-
Jjection seems to offer more promising features for recognizing flat objects (Forsyth et al. 1991,
Forsyth et al. 1992, Liu et al. 1993, Rothwell 1992). On the other hand, a typical rotationally sym-
metric object contains extended sequences of local symmetries. Thus, aspect ratio constraints can
be used to prune symmetries created by randoin alignments and detect prominent symmetries in lin-
ear time (Brady and Asada 1984, Connell and Brady 1987, Fleck 1986, Fleck 1994). This approach
cannot be used to filter bitangents, because they involve small discrete sets of points and, thus, all
known algorithms for detecting bitangents are O(n?) (Kriegman 1993, Liu et al. 1993, Ponce 1989).

The two projections seem to provide complementary types of shape information. This suggests
that better shape descriptions could be produced by using calibration information to transform
between the two projections (see appendix B). Alternatively, for relatively small objects, perspective
features can be detected approximately in stereographic images, as we will see in the next section.

8 Local shape

Many objects, features, and surface patches encountered in computer vision subtend only small
visual angles. For example, the terminal screen in the upper left of figure 9 has an angu-
lar radius of perhaps 10 degrees. Because stereographic projection is conformal, it approxi-
mately preserves the shape of small regions on the viewing sphere (Berger 1987, Hahn 1994,
Hilbert and Cohn-Vossen 1932). Therefore, small regions look approximately the same no mai-
ter where they lie in the field of view: their projection approximates perspective projection near
the optical axis.

This narrow-angle approximation can be made as accurate as required by considering a small

2This cross-ratio should be computed by representing the 2D feature points as complex numbers as in (Hahn 1994),
not by computing distances along the curve which is the image of L.
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Figure 9: In stereographic projection (left). the shape of an object is approximately the same.
regardless of where it occurs in the field of view. unless it subtends a laree visual anele.  In

perspective projection (right ). objects near the periphery (c.e. the phone) are visibly distortod.

Table 20 Lrror in civele centers as a percentave of cirele radius

angular angulbar radins
position || 5 | 107 | 15" | 200
W f[us]15 [23 |3
A1 LA | B 1.5 6.4
GO 25 5.1 6 1{).2
sl ST O L 6
OO | 5.2 1 104 | 157 | 210

cnough region. For example, table 2 shows the distance between the eentor of a cirele in L
coordinates aud the projection of its center in spherical coordinates. These are the maxingimn
errors that would ocenr if centers of 2D symmetry circles were used to locate the 3D SVILHIetry
axis, or if the ratio of two distances in the stereographic nnage was used to estimate the ratio of
the corresponding anewlar distances on the viewing sphere. The errors are substantial for Lo

peripheral cireles, but modest for small circles within a wide field of view.

I stereographic projection. the sides of polygonal regions are curved. However. this distortion
is bounded. The hmages of straight 3D lines are great cireles on the viewing sphere. Of these, the
equator of the viewing sphere (a0 = 907) projects onto the smallest circle in the stereograplic hmage.
with radins & (where & is the scaling constant for stercographic projection). This sets a global upper
bound on the curvature of the images of straight lines. If a contour has higher enrvature that this.
its pre-image in 3D cannot have been straight.

Becanse the sides curve in stereographic projection. the angles i an n-gon are larger than
the 180(n — 2) degrees expected for a planar n-gon. Because stereographic projection preserves
mtersection angles, the excess in a stereographic image is exactly that for an n-gon on the unit
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sphere: its angular area. If the angular radius of the n-gon is «, its area on the viewing sphere is
smaller than the area covered by a circle of radius «: 360(1 — cos@). So, for n-gons with radii 5,
10, 15, and 20 degrees, the error in the sum of the angles is only 1.4, 5.5, 12.3, and 21.7 degrees.

Thus, we can compute perspective features {e.g. bitangent lines, curvature zero crossings)
approximately from a stereographic image, so long as the points belonging to each feature all lie
within a small neighborhood. Bounds on the errors in this approximation can be derived from
bounds on the field of view of the camera. If no better information is available, worst-case bounds
can be derived from the fact that no commercial lens has a field of view greater than 220 degrees.

If an object spans a small range of depths relative to its distance from the camera,
as well as subtending a small visual angle, its projection onto the stereographic image ap-
proximates scaled orthographic projection. Images of the object from different viewpoints
are then approximately affine transformations of one another. A large number of texture
(Malik and Rosenholtz 1994), stereo (Otto and Chau 1989), motion (Cipolla and Blake 1992),
and shape algorithms (Huttenlocher 1988, Lamdan 1988, Mukherjee 1994, Pillow et al. 1994,
Zerroug and Nevatia 1993) have been developed using affine matching and affine invariants. When
they are applicable, these techniques are simpler and more powerful than general perspective meth-
ods (Forsyth et al. 1991, Forsyth et al. 1992, Liu et al. 1993, Rothwell 1992).

In the four projections other than stereographic, small regions change shape as they move across
the field of view. For example, in perspective projection, a small spherical object at angle « from
the optical axis appears as an ecllipse of clongation ——. The distortion is small within about 25
degrees of the optical axis, leading some authors (Malik and Rosenholtz 1994, Pillow et al. 1994)
to dismiss this effect as small. However, the ellipse’s elongation increases rapidly as the object’s
position moves past 45 degrees: 1.1 at 20 degrees, 1.3 at 40 degrees, but 2.0 at 60 degrees and 5.8
at 80 degrees. The distortion of shape is obvious in figures 1, 2, and 9.

This distortion of peripheral regions occurs no matter how small an angle the regions subtend.
As a result, stercographic features (e.g. local symmetry) cannot be computed from wide-angle
perspective images without large errors. Similarly, affine algorithms can be applied only to objects
lying near the optical axis. The full extent of the problem with perspective projection cannot be
observed empirically without calibrating one’s camera. Barrel distortion is common even in lenses
with modest fields of view—a slight bending of straight lines may not be obvious to the casnal
observer—and it will tend to move the projection towards sterecographic and improve the quality
of affine approximations.

Thus, in wide-angle perspective projection, we can use only perspective features. In stereo-
graphic projection, however, we can use not only stereographic features, but also (locally) approxi-
mate perspective and affine features. This asymmetry is a strong argument in favor of stereographic
projection.

9 Why do wide-angle images look strange?

No matter which projection is used, wide-angle images look strange. Either straight lines ap-
pear curved or spheres appear elliptical. Exaggerated perspective makes objects seem misshapen:
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Figure 10: If a sphere lies at distance d from the center of the viewing sphere and it subtends an
angle 2a, then its 3D radius is dsina.

Figure 4 is not a flattering portrait of the author. Manuals of photography (Hedgecode 1993,
Kingslake 1992, Ray 1994) often contain advice about how to avoid or conceal these artifacts: e.g.
the horizon should be kept straight by making it pass through the center of the image, portraits
should be taken with narrow-angle lenses. Furthermore, despite acknowledging some of the argu-
ments given above, photographic texts present perspective projection as the ideal model.

The apparent discrepancy between the claims made in this paper and standard photographic
practice is due to differences in goals between standard photography and imaging for computer
vision. In computer vision, images produced by a video camera are transmitted directly to algo-
rithms for interpreting them. In standard photography, images are displayed as prints or on a TV
or projector screen. This flat 3D image is then projected through the human eye to produce the
mmput to human visual processing.

When you look at a photographic print or a TV image, your natural tendency is to interpret
it as if the image on your retina was generated by 3D objects in your environment. Therefore,
objects in photographs look distorted unless the camera’s field of view and the viewing distance
of the print are chosen so that the images of objects in the print subtend the same angles that
the objects would subtend if they were physically present (Kingslake 1992). Furthermore, because
the first step in human vision is perspective projection (onto a spherical retina), the print must be
created using perspective projection.

To understand why perspective seems exaggerated in wide-angle images, suppose that we sce
two spheres whose relative sizes we know. Let their 3D radii be v and {r, where { 1s known and r
is unknown. Suppose that the images of the spheres subtend (observed) angles 2c and 2¢/, with
centers separated by (observed) angle 8. The distances to the two spheres are then —— and S;;ra,

B iRed
(figure 10).

The distance between the centers of the spheres is then rk, where £ is given by:

1 % 2 2l cos 3
sin?(a)  sin’(a’)  sin(a)sin(a’)

k? = (1)

(figure 11). This equation can be used to estimate the distance between two people, relative to the
size of the people, because all human heads are approximately the same size. It also implies that a
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Figure 11: The distance between two spheres of known relative sizes, can be calculated (relative to
their radii) from their images on the viewing sphere.

surface formed by sweeping a sphere along a space curve (Pillow et al. 1994) can be reconstructed.
except its overall size, from a single calibrated image.

For this calculation, the camera’s field of view must be known, in order to convert mage
distances into angular distances. Human observers use calibration information for their eyes i
interpreting 3D scenes. The human cye has a single, fixed field of view. Therefore, human perception
algorithms need not be invariant to changes in field of view, i.e. zooming, because they do not
occur. So, a human observing figure 4 at normal reading distance will interpret it using an erroneous
estimate of the effective field of view. The constraints imposed by equation 1 will then imply that
my hand is unnaturally small relative to my head, or my arm is unnaturally long.

More generally, a photographer can make two objects appear to have any desired separation
by adjusting the camera’s field of view. Consider two spheres lying at different distances from the
camera. If we change the field of view of the lens and adjust the viewing distance so that the
front sphere stays a constant size, the size of the back sphere will change. This mimics a change
in the distance between the objects. Similarly, zooming a video camera increases or decreases the
apparent separation between objects in an unnatural way. Photographers avoid zooming when this
artifact would be significant, except as a deliberate special effect (Kingslake 1992).

Photographers favor narrow-angle lenses because standard-size prints subtend small angles at
normal reading distance. Wide-angle images look strange because we typically see them from the
wrong distance. Prints taken with non-perspective lenses look strange because this is the wrong
way to produce prints to be shown to human observers. In computer vision, as in other types of
scientific photography (e.g. astrophotography), these considerations are not important because the
images are passed directly to processing algorithms.
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10 Conclusions

In this paper, we have seen five alternative models for wide-angle imaging, all of which have
special properties which might be useful in particular applications. Of these, only three have low
variation in intensity values and support very wide-angle images: stereographie, equi-solid angle,
and equidistant projection. Only stereographic and perspective projection preserve powerful shape
properties useful in object recognition. Finally, because stereographic projection is conformal,
it locally approximates narrow-angle perspective, so the projection of small, compact objects is
approximately orthographic. This enables local affine techniques to be used anywhere in the field
of view. Based on a combination of these properties, stereographic projection is the best choice for
a general-purpose imaging model.
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Appendix A: Panoramic cameras

This paper considers only projections that are rotationally symmetric about the optical axis. A
second class of projections are also used in optics and in cartography. In panoramic projections,
the horizontal direction is special. A point on the viewing sphere is represented by two angles:
7 = atan(z, z) and § = asin(y). The projection function  maps this point onto the point (v, p(d)).

To implement such projections, panoramic cameras focus light through any of the lenses de-
scribed in section 3, but a slit mounted behind the lens allows only a vertical strip of light to reach
the film. The lens is then rotated, sweeping out a panoramic image on the film (Kingslake 1992).
The projection function p depends on the lens chosen. Panoramic cameras are primarily used for
photographing landscapes and large groups of people.

Panoramic projections have been studied primarily because of their applications in cartography.
Some of the discussion in this paper can be generalized to panoramic projections. For example, a

conformal projection (the Mercator projection) can be produced by setting p(d) = log(tan(ﬁ'zﬁl))
(Monmonier 1991, Berger 1987). An area-preserving projection is produced if p(d) = sind

(Berger 1987, Hilbert and Cohn-Vossen 1932, Monmonier 1991).
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Appendix B: How are stereographic and perspective coordinates
related?

If the camera is calibrated, it is straightforward to transform image locations between any two
of the projections defined in section 3. In particular, the stereographic projection (z,,y;) and
the perspective projection (zp,yp) of a point on the viewing sphere are related via the following
equations adapted from (Horn 1986):

M @)

(Eats) = (—
:I:S:?)!S = ?
Ll 4wy L3 Jflbyd

2 .2 &
where r; =z, +y,, and
4z, 4y,
T i) = 3
( IHJP) (,1—?"314—?"3] ( )
where 72 = 22 4 42

These formulas assume that the radial projection function for perspective projection is tan(ev)
and that for stereographic projection is 2tan(5). To convert pixel coordinates, the formulas must
be adjusted to incorporate appropriate image scaling constants.

Appendix C: Why stereographic projection preserves circles

It 1s well-known in mathematics that stereographic projection preserves circles. A geometrical
proof can be found in (Hilbert and Cohn-Vossen 1932); (Hahn 1994) contains a proof using complex
numbers. To sketch the main idea, suppose that point P lies at angle « from the optical axis N .S
(figure 12). The stereographic image P of P lies where the image plane intersects the line passing
through P and the far pole N. The two line segments ON and OF have the same length, implying
that the two angles marked [3 are the same. Since v = 180 — & (sum angles to one side of line N.S)
and also y = 180 — 27 (sum angles within triangle), § = £, confirming that the formula given in
section 3 agrees with this geometrical construction.

The two angles labelled d must be the same, because they are both equal to 90 — 3 (add up the
angles to one side of the tangent at P; NSP is a right triangle). So the tangent plane at P and the
image plane intersect the projection line NP at the same angle. Let C be a circle on the viewing
sphere, centered at P. ¢ must lie in a plane parallel to the tangent plane at P.

To project the circle C' onto the image plane, we construct a cone of rays from N passing
through the points of C. The cross-section of this cone is an ellipse. lts axis of elongation lies
in the plane of the cross-section shown in figure 12 (left). Because the image plane and the plane
containing C cut the cone at the equal (but opposite) angles in this cross-section, their intersections
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Figure 12: The tangent plane to the sphere at P and the image plane intersect the stereographic
projection line NP at the same angle § (left). Any circle centered at P lies in a plane parallel
to the tangent plane at . These three planes cut an elliptical cone at the same angle, so their
intersections with the cone must have the same shape (right).

with the cone must have the same shape (figure 12, right). So, since € is circular, its image is also
circular. If the point N happens to lie on the circle C, this construction will not work; in this case,
all the projection rays are coplanar and C’s image is a line.

Appendix D: Visibility of symmetries in surfaces of rotation

Cross-sections of surfaces of rotation are examples of 3D symmetry sets which frequently generate
2D local symmetries. ‘To estimate how often a 2D symmetry occurs, let C be such a cross-section.
The angle 2« that € subtends on its symmetry sphere measures how quickly the cross-section
radius is changing. The rays from the camera center are tangent to C’s symmetry sphere along
another circle Y. If the symmetry sphere subtends an angle of 2/ on the viewing sphere, then the
radius of Y is 90 — 3 degrees.

Condition (1) from section 7.1 will be satisfied if C and Y intersect in at least two noints, ie if
C’s center (on the symmetry sphere, not in 3D) lies in the band of radius e around Y. The fraction
of the sphere’s area covered by this band is

% min(1, sin(f + a)) — %max(— L,sin(f — a))

So if « is large (cross-section radius changing slowly) and £ is small (object not very close to the
camera), a 2D symmetry will appear much of the time.
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