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Abstract:

Al
This paper presents a new two-stage model of image formation: projection onto a sphere, followed
by any of several projections onto a flat image. On the sphere, 2D shape does not depend on viewing
direction. Close relationships between 3D and 2D exist not only for lines, but also for spheres and
for local symimetries. Simple classes of 3D shapes can be reconstructed with few ambiguities.

Traditional perspective projection of the spherical image preserves straightness, thus features
such as bitangent lines and. curvature sign. Circles can be preserved by switching to stereographic
projection. S graphic projection is conformal (angle-preserving), handles very wide-angle views,
reduces variation in brightness, and approximates a fish-eye lens. Using both projections, both
straightness and circularity can be detected in wide-angle images. A fast linear algorithm for local
symmetries is presented.

Keywords: stereographic projection, fisheye lenses, wide-angle images, imaging geometry, shape
representation, object recognition, local symmetries, camera calibration

1 This research was carried out at the Department of Computer Science, University of Jowa. It was supported in
part by Research Initiation grant IRI-9209728 and Research Instrumentation grant CDA-9121985 from the NSF.
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1 Introduction

In computer vision, perspective projection is generally accepted as the ideal model of camera imaging.
Deviations from this ideal are analyzed as distortion, to be removed by suitable lens design [62] or
software calibration [40, 57]. In perspective projection, straight lines project as straight.? This
implies close relationships between the 3D notions of co ity, bitangency, and curvature sign and
their counterparts in the 2D image [21, 22, 34, 36 . 53, 54, 65]. It also implies that the
search paths in stereo matching and the paths of features under camera translation [9] are linear
(not curved).

However, perspective projection distorts the s = of objects if they are not centered in the
field of view. For example, spherical objects appear circular in the center of the field of view, but
elliptical in the periphery. Shape representations can be nvariant to these changes in shape
(21, 22, 43, 47, 54, 64, 65], but at the cost of losi formation zbout the shape and orientation
of objects. Furthermore, a perspective Image must = a 180 degree field of view. Near
180 degrees, peripheral objects are grossly enlarged:; =grees, perspective projection is
no longer one-to-one.

These difficulties can be avoided by projecting onto a sphere (the viewing sphere) rather than onto

=d uniformly, and rotation about
es lens design [35]. Spherical
ally used (e.g. [14, 32]) for
have used spherical plates

the camera center is made easy. A curved image surface
projection is used (approximately) in the human eye, i
theoretical analyses in computer vision, and a few pl

[35]. However, 2D images are much easier to work with- they are conveniently stored as arrays,
low-level operations such as convolution are easy to implement. and one can use 2D rather than 3D
geometry. Furthermore, neither spherical film nor spherical CCD zrr zys are available. These factors
have prevented spherical projection from becoming popular

This paper introduces an alternative imaging modsl, based on stereographic projection of the

r circulzr. This implies a close rela-
s 2D image. The viewing
zll objects approximately preserve

viewing sphere. In this model, spherical objects alway
tionship between local symmetries of a 3D object and I
sphere is mapped conformally onto the image, implying th
their shape no matter where they appear in the field of v
curves are preserved exactly. Finally, almost all of the viewin: sphere can be represented using a
single 2D image.

for some real lenses [28, 31,
=nticzal. Good approximations

Both stereographic and perspective projection are pl
35, 50]. For narrow-angle lenses, the two projections are
to perspective projection can be obtained for fields of
extremely wide fields of view—up to 220 degrees—are =
similar to stereographic projection. Cheap wideangle
two extremes (figure 1). In computer vision and opties,
“barrel distortion” [48, 62].

W
I8

10 degrees. Lenses with
se Imaging geometry is
where in between these
ed as having significant

py

Thus, stereographic projection provides a second, alternative imaszing model which may be prefer-
able to perspective projection for some applications. tion is available, a com-
puter vision algorithm can use both projections simul ously DX le, a shape algorithm
can use properties based on circles and angles, together with properties 1 on straightness and
properties based on smoothness (e.g. tangency, corners [1]). This better exploits the information

?In the interests of clarity, I will ignore degenerate cases and technical conditions = where they are directly
relevant to my argument. Interested readers should have no dif f S

the camera center appears in perspective projection, or which
involve dividing by zero.
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Figure 1: The outlines of spheres (table-tennis balls
(top left), but as a variety of ellipses in perspective projection (top right). The output of our wide-
angle lens (93 by 72 degree field of view) is somewhere between these two projections (bottom).

) appear as circles in stereographic projection
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present on the viewing sphere, allows richer representations of 2D regions and should eventually lead
to more robust recognition of 3D objects.

The next section will define several camera models and their properties. Section 3 will discuss
some key issues in more depth. Section 4 presents a theoretical analysis of local symmetry represen-
tations and section 5 shows how they can be implemented using a combination of perspective and
stereographic coordinates.

2 Rethinking the concept of a camera model

Computer vision algorithms model ideal lenses using perspective projection, a suitable model for
narrow-angle lenses [32, 48]. The other model in common use orthographic projection plus scaling
(sometimes called “weak perspective”), only approximates the behavior of a real lens when an object

1s near the optical axis and its diameter is small compared to its distance from the lens [48]. In

this section, we will see how to construct a wider class of projectjon models, while retaining a close
match to real lenses. )

2.1 A traditional camera model

The most familiar equations for perspective projection map a 3D point (z, y, z) directly onto the 2D
image location:

(f(IL"—CI:)'Q‘{ZJ—f; (1)

z Z

(zp’yp) =

where ¢, and ¢, are the coordinates of the Image center (the intersection of the optical axis with
the image plane) and f and g are constants incorporating len
and the sampling rate in the framegrabber.? For narrow-angl
For low-precision applications, any errors in the projection mo
other sources, such as misplacement of edges because of smoot
class of objects, approximation of edges-by polynomial curves. =tc.

. this model is fairly accurate.
=l will be smaller than errors from

3

hading, shape variation within a

Good approximations to the parameters of perspective projectionf, g, ¢,, and cy—can be ob-
tained from the specifications supplied with video cameras and lenses. For high-precision applica-
tions, camera calibration [40, 57] can supply precise values and

geometry. Much of this calibration can also be done using two v of feature points under an un-
known camera transformation [16] or one view of a known object [2:
been shown [21, 22, 47, 54, 64, 65] that some types of objects can
which are invariant to changes in the projection parameters. These al
for the projection parameters or require them only to lie within bro
on the field of view). However, they require a close approximation tc

orithms do not require values
ranges (e.g. an upper bound
ideal perspective projection.

Wide-angle lenses, however, may diverge significantly from perspective projection. The distortion
1s typically radial. That is, it changes the distance, but not the direction. of each image point, relative
to the image center. This causes straight lines (except those through the image center) to appear
bent; the curvature increases with distance from the image center. Figure 2 shows that the output
of our camera * contains substantial radial distortion (figure 2). The image of a straight line may

3The following discussion does not depend on how one handles points with z = 0.
*A NEC NX18A Color CCD Camera with a Computar 3.6 mm lens, 83 by 72 degree field of view
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Figure 2: Lines in 3D (in this case, lines on a flat piece of graph paper) appear as lines in perspective
projection (top right). In stereographic projection, they appear as circular arcs (top left) unless they
pass through the image center. Compared to the perspective image, the stereographic image has
“barrel” distortion. The output of our wide-angle lens is shown for comparison (bottom): its field
of view is about 93 by 72 degrees.

contain as much as a 20 degree range of orientations. The apparent width of a graph paper square,
which should be constant, varies by a factor of two across the image. These errors are too large for
most vision applications to ignore.

Therefore, wide-angle lenses must be calibrated to remove radial distortion. For high-precision
applications, high-precision calibration targets are required: the reader is referred to [40, 57]. A
similar result can be obtained by using a robot arm to move the camera at medium precision (cf.
[57]). For low-precision applications, most of the distortion can be removed with a simple, low-
technology procedure: see Appendix A. In any case, it seems difficult or impossible to estimate the
distortion without also estimating f, g, ¢, and Cy-

In this paper, I will assume that the camera system has been calibrated, at least approximately.
First, calibration seems impossible to avoid if wide-angle lenses are to be used, because of radial
distortion. Second, approximate parameter values are easy to obtain. Third, a non-zoom lens only
needs to be calibrated once, because the calibration does not change over time. Finally, a calibrated

Q.
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Figure 3: A position X on the viewing sphere can be renresented by two angles « and B relative to

a reference point C on the sphere (left). Projection = onto the plane (right) will preserve
B. It maps each value of « onto a distance d(a) from the Image center.
image provides more information about the shape of :" jects than an uncalibrated image (see below,

section 3.2). To simplify the following theoretical dise , I Wﬂr assume that f = ¢ = 1 and
¢z = ¢y = 0. The implementer of a real system must adapt the analysis by adding appropriate
scaling constants.

2.2 Spherical projection

The traditional camera model projects the world onto the imzge in one step. In order to develop
and analyze alternative i imaging models, I will decompose tif perspeciive projection into two steps.
First, the 3D scene will be projected onto a sphere. Then. the = spherical image will be projected onto
a plane to produce the final (flat) camera image.

I will define the viewing sphere to be a unit sphere c= I a2t the origin. The 3D scene is
projected onto the viewing sphere through the center of the phere. That is, the point (z,y,2) is
projected onto

(2)

(Iu;yu;zu) =

-
-
T

|t
1|

where r = /22 4+ y? + 22, This spherical repr

ese = contains all the information
that is potentially available to a computer vision lgw:

Alternatively, suppose that we choose C = (0,0, 1) to be a reference point on the sphere, marking
the direction of gaze. We can then describe the image (Zy, Y, Z=) of (z,y, z) in terms of its angular
position, («, §) relative to C (figure 3). The 1at1<u% angle @ from C to (zy, yu, z,) is atan(q, 2),
where ¢ = \/z? + y? and atan is a 2-parameter invers i of the sort found in many
programming languages.® The longitude angle 3 m of (zy, yu,Zu) in a circle
around C' and is given by atan(z,y). Angular representation of view are often used in
optics, in opthalmology, and visual psychophysies.

5Specifically atan(a, b) returns the angle whose sine is 2 and whose cosine is 5. [ will 2ssume that its output lies in
the range [—180,180] degrees.
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Projection onto the viewing sphere preserves two key features of 3D shape. A straight line in 3D,
not passing through the origin, projects onto half a great circle on the viewing sphere. To see this,
intersect the viewing sphere with the plane that contains the 3D line and the origin. Conversely,
every half great circle corresponds to (among other possibilities) a set of 3D lines. Secondly, a 3D
sphere S which does not contain the origin projects onto a region whose outline is a (non-great) 2D
circle, because the situation is symmetric about the line which contains the origin and the center
of S. Conversely, every non-great circle on the viewing sphere corresponds to a set of 3D spheres
(among other possibilities). -

In general, projection of objects onto the viewing sphere is simpler than projecting them onto a
plane, because the shape of an object does not depend on its position in the field of view. Rather,
the apparent shape of an object depends only on its distance and orientation relative to the center of
the viewing sphere. If an object is small relative to its distance from the center of the viewing sphere,
its projection onto the viewing sphere can be approximated by scaled orthographic projection onto
a plane. The apparent shape of an object can vary less under orthographic projection than under
perspective projection, e.g. parallel lines remain parallel, the projections of a flat object vary by
affine transformations [34]. Consequently, a wider range of shape ‘analysis algorithms can be used
(e.g. [6, 34, 47, 58, 59, 60, 64]).

Given some specification of the accuracy required from our orthographic approximation, we can
verify whether an observed object is sufficiently small in two dimensions by measuring its angular
diameter on the viewing sphere. Its size in the third (depth) dimension, relative to its distance
from the observer, can be constrained using a priori knowledge of the object, e.g. a bound on the
elongation of objects in our modelbase. Alternatively, we can impose a bound on the tilt of the
object relative to the observer and accept that the algorithm will fail if an object exceeds this tilt.
This approach is standard in stereo matching. In either case, we can establish a maximum angular
diameter below which orthographic projection is sufficiently accurate.

2.3 Projections of the viewing sphere

The viewing sphere could be projected onto the plane in a variety of ways. I will consider only
projections that are symmetric about-the z-axis and preserve [ (at least for the front half of the
field of view). Real lens systems have these properties; because it is difficult to manufacture lenses
which are not rotationally symmetric. Therefore, suppose that we represent points on the output
image using polar coordinates (r,0) about the image center. The conditions on our projection imply
that § = . Thus, to specify a projection, we need only specify how each value of « is mapped onto
a radius r (figure 3).

There are (at least) four reasonable, qualitatively different ways to map values of o onto values
of r:

e 7 = tan(a) (perspective projection)

o 7= 2tan($) (stereographic projection)

* 7 = o (equidistant fish-eye projection)

o r =sin(a) (orthographic projection)

Graphs of these functions, normalized so that they are all identical at 45 degrees, are shown in
figure 4. Narrow angle or corrected wide-angle lenses are designed to emulate perspective projection.
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Figure 4: Four methods of mapping angles (from 0 to 180 degrees) onto distances from the image
center. Perspective and orthographic projection (top). S graphic and equidistant fish-eye pro-
jection (bottom). Vertical units have been normalized so that all four functions have the same value

at 45 degrees.

W

Fisheye lenses are designed to emulate equidistant fish-eye or orthographic (also called sine law)
projection [35] of the viewing sphere.®

Stereographic projection is widely used in mathematics [27, 44]. It is known as a way to emulate
fish-eye lenses in graphics [31] and as an alternative repr i

puter vision [32]. It is not (as far as I know) used in the «
to equidistant fish-eye projection for a wide range of angle:
stereographic, and orthographic radii to the equidistant fish-eve
have been normalized so that they are all 1.0 at 45 degrees. S
to the equidistant fish-eye coordinates for angles up to about 100
degree field of view).

of lenses. However, it is very similar
Tzble 1 shows the ratio of perspective,
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Notice that this has an effect quite different from orthographic projection of the 3D scene directly onto the image
plane.
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Figure 5: Geometrical constructions of the image of a point X undet orthographic projection (left),
perspective projection (middle), and stereographic projection (right).

Table 1: Comparison to equidistant fish-eye radii
(Normalized to be 1.0 at 45 degrees)
angle perspective stereographic  orthographic

10 0.79 .-0.95 1.11
20 0.82 0.96 1.09
30 0.87 0.97 1.06
40 0.94 0.99 1.02
50 1.07 - 1.01 0.98
60 1.30 1.05 0.92
70 0 1.77 1.09 0.85
80 3.19 1.14 0.78
90 +00 1.21 0.71
100  -2.55 1.29 -~ 0.63
110 -1.12 1.41 0.54
120 -0.65 1.57 0.46
130  -0.41 1.79 0.38
140 -0.27 2.13 0.29
150  -0.17 2.70 0.21
160 -0.10 3.85 0.14
170 -0.05 7.30 0.07
180  -0.00 0 0.00

Three of these projections correspond to simple geometrical constructions (figure 5). Suppose
that the image plane is tangent to the viewing sphere at (0,0,1). The orthographic projection of a
point X on the sphere is the intersection of the image plane with a line through X perpendicular
to the image plane. The perspective projection’of X is the intersection of the image plane with the
line containing X and the center of the viewing sphere. The stereographic projection of X is the
intersection of the image plane with the line containing X and the far pole (0,0, -1).

Using these constructions, it is easy to derive specific equations for projecting a point (z,, y,, z,)
on the sphere to a point (z',y') on the plane:

LR Y T e e
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¢ perspective: (z,y/) = (F>, &=

* stereographic: (2, Y) = ey r

* equidistant fish-eye: (2, ¥) = (pzu, py.) where P=atan(\/z2 + 2 2,)

orthographic: (=',¢) = (Zu, 1)

From these equations, it is clear that Perspective projection
half of the viewing sphere. In projecting the back half
angle (because z, is negative). By contrast. the other thre
points on the sphere.

2.4 Properties of projections

Each of these four projections offers some advantages but has some disadvantages, summarized in
Table 2. These properties fall into three categories. t, the tion should represent as much
of the viewing sphere as possible, Preserving its topol 8¥.  Second, the brightness of the image of
an object should not depend on its position in the field of view. arge variations in brightness mean
that some part of the image will be either very dark o ated, no matter how the aperture is set.
Finally, the shape of regions on the viewing sphere shou = preserved in the planar image, because

this leads to simpler algorithms for shape description, texture analysis, and stereo matching.

S equidistant orthographic
one-to-one? no yes ves no
continuous except (0,0, —1) no yes ves yes

. front-side image finite? no yes VES yes
back-side image finite? no no Ves yes
uniformity of illumination? bad ok ok perfect
preserves straightness? yes no no no
conformal? no ves no no
preserves circles? no yes no no

1 - 3

In order to represent wide-angle views with planar images, the ideal projection should map the
entire viewing sphere one-to-one onto the plane, preferably onto a bounded portion of the plane.
Perspective projection maps the front half of the viewing sphere onto the entire plane, there is a
singularity at 90 degrees from the viewing direction, and the back half is projected on top of the
front half. This limits perspective images to less than a 180 degree field of view. By contrast,
stereographic projection maps the sphere (minus one point at the back) one-to-one onto the entire
plane. Equidistant fish-eye projection maps the sphere (minus one point) onto a bounded region of
the plane. Finally, orthographic projection maps the front half of the viewing sphere onto a bounded
region of the plane and the back half is projected onto the same region.

Ideally, a uniformly illuminated piece of paper should generate an image filled with a constant
value. This is not.typically the case for rea] lenses [35, 48 52]. With an ideal perspective lens, the
apparent intensity of a patch of surface at angle o from the optical axis will be diminished by a
factor of cos*(a). A drop of cos?(«) is created because the image location is Cosl(a) further from the
lens than a location on the optical axis and Intensity drops as the square of distance. Two further

"Exact preservation of the entire viewing sphere is clearly impossible: a sphere is not homeomorphic to a plane.
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factors of cos(a) are introduced because the image location sees the exit pupil at an angle and light
hits the image plane at an angle. If the lens has a 90 degree field of view, this means the edges of
the image will be only one fourth as bright as the center. Further variation in illumination may be
caused by vignetting or stop distortion [35].

The transformation from perspective to any of the other projections tends to make illumination
more uniform across the image. First, a unit square near the periphery of the image represents a
larger portion of the viewing sphere than a similar square near the middle of the image. Second, for
a particular angle o on the viewing sphere, the corresponding image location is closer to the optical
axis. Therefore, images from stereographic or equidistant fisheye lenses are more evenly illuminated
than perspective images. Ideal orthographic (sine law) projection of the viewing sphere apparently
creates perfectly even illumination [35].

Finally, perspective and stereographic projection create useful relationships between 3D and 2D
shape. Perspective projection preserves.straightness. That is, it maps great circles on the viewing
sphere-the images of straight lines in 3D—onto straight lines in the planar image. Stereographic
projection preserves circularity: it maps circles on the viewing sphere-images of spheres in 3D-
onto circles and lines on the image plane (see section 3.4) for detaifs). Furthermore, stereographic
projection is conformal [27, 44]. That is, if two curves intersect at angle # on the viewing sphere,
they intersect at the same angle 6 on the image plane. This implies that shape is approximately
preserved for small patches of the viewing sphere, with the approximation improving as the patch
size is decreased. I am not aware of any similar shape-preservation properties for orthographic and
equidistant fisheye projection of the viewing sphere.

Taking all these properties as a whole, stereographic projection seems to be the best choice for
a general-purpose vision representation. It maps most of the sphere® one-to-one onto a bounded
region of the plane. It preserves circularity and local shape. Although it does not preserve global
straightness, this can be remedied by using perspective as a secondary coordinate system. Finally,
stereographic projection provides fairly uniform illumination of the image. For intensity-based algo-
rithms (e.g. color constancy, shape from shading, texture, stereo matching) the remaining variation
can be removed by calibration.

3 Selected topics in more details

Because these projection methods are unfamiliar, certain issues deserve more detailed discussion.

3.1 Why use wide-angle lenses?

Many of the issues discussed above could, of course, be avoided by using only narrow-angle lenses
(e.g. field of view less than 50 degrees). For these lenses, radial distortion is not substantial and the
four projections of the viewing sphere are approximately the same. However, the lack of peripheral
vision is a handicap for visual searching, navigation, and detecting objects moving towards the
observer. Although a human eye has good resolution for.only about 50 degrees, the full visual field
extends at least 90 degrees [4, 63]. The peripheral areas deliver only low-resolution information, but
this is useful for detecting motion and finding large objects. Inexpensive 35mm and C-mount lenses .
can deliver a field of view as large as 110 degrees.® Wide-angle lenses have a very large depth of

8 Specifically: the sphere minus any ball larger than a point around (0,0, —1) is mapped onto a bounded region of
the plane.

£180 degree lenses are expensive; 220 degree lenses prohibitively so.
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degrees. This panoramic view provides a context for deciding where to direct your high-resolution
foveal vision. It also allows you to detect unexpected events (e.g. an attacking lion, an approaching
car, a softball) coming from many directions. The human field of view is limited by the fact that
both eyes point forwards, so as to provide stereo depth information. Animals for whom panoramic
view is more important than stereo (e.g. many herbivores) have eyes that point sideways and an
even wider field of view.

Finally, in mapping obstacles for robot navigation, it might be useful to represent the distance to
the nearest obstacle in all directions, including behind the observer. Although perspective projection
1s limited to views less than 180 degrees, the three fisheye projection models could be used to create
a stereo depth or disparity'image covering most of-the entire viewing sphere. Or, alternatively, they
could provide a uniform set of coordinates for a more compact, symbolic representation of obstacles
(e.g. in terms of regions and their boundaries). <

3.2 Why calibrate field of view?

Data from any of the four projection models can be converied to spherical projection, if the camera
system is calibrated. In particular, one must know the field of view. 19 This can vary substantially,
depending on the lens chosen. Compact, affordable 35mm and C-mount lenses have fields of view
ranging from 110 degrees down to 5-10 degrees,!! a ra of more than an order of magnitude.
Matching the resolution of human foveal vision with = < rd CCD camera, e.g. for reading or
close inspection, would require a field of view between 4 and = degrees (based on data in [63]).

Camera calibration is required whenever the vision system must interact with a 3D positioning
system, such as a robot gripper or a robot camera mount. K the lens is perspective, without
significant radial distortion, many aspects of 3D shape can b= - ited without calibration using
representations based on projective invariants (16,21, 22, 43 4 55]. However, potentially useful
information is lost when calibration data is not available. For ple, the ellipsoid in figure 6 can
only be distinguished from the spheres if the image’s as ratio of horizontal to vertical
distances in the Image) is known. If the Image is perspective, the image center must also be known

(cf. [47)).

The field of view parameter is required to establish a relationship between the distance to an
object and the object’s 3D size. If the camera is calibrated. we cale positions returned by the
edge finder so that they lie in the ideal perspective or ster ges defined in Section 2. The
projection equations can then be inverted to derive coordinates on the viewing sphere. For example,
Wwe can compute the angle subtended by a spherical object. If the field of view is unknown, however,
we can only derive a 1-dimensional family of possible shapes on the viewing sphere.

Specifically, a sphere projects to a circle on the viewing sphere. If its angular radius is « and the
distance between its center and the origin is d, then its 3D radius is dsin(a) (figure 7). Consider an
object made of two identical spheres of unknown radius r. suk ding (known) angles 2« and 2a/,
with centers separated by (known) angle 3. The distances to the centers of the spheres are sTnfE}
and m The distance between the centers of the spheres is then rk, where £ is given by:

using focal length in shape analysis
on of the CCD array, as well as any

19Tt would be more traditional to refer to this Parameter as focal length. but
requires additional parameters to represent the physical size and pixel r
adaptors used to connect the lens to the camera.

1 Lenses with even smaller fields of view exist. but they are expensive and so long as to be unwieldy.
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Figure 6: A image containing an object that is approximately ellipsoidal and two spheres. If we
know that the image has not been compressed vertically or horizontally (f = g for perspective) and
that the optical axis runs through the center of the image, the uppermost figure cannot be an 1mage
of a sphere. In stereographic projection (left), it would project as a circle. In perspective projection
(right), its axis would point towards the center of the image.
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Figure 7: If a sphere lies at distance d from the center of the viewing sphere and it subtends an
angle 2« then its 3D radius is dsin(a).

§2 1 1 2cos 3

; o g — — (3)
sin’(a)  sin’(af)  sin(a)sin(a’) d

Thus, from the calibrated image, we can derive the ratio of the sphere radius to the inter-sphere
distance. This information could be used, for example, to distinguish two barbells with the same
length but different-sized ends. We can also compute the angle v by which the barbell is tilted away
from a frontal view:

sin(e) 1 1
k2 . \
T )

co 3N 3
sin“(c)  sin“(«’)

o

v =

(See e.g. [5] for the required formulas.) To achieve reasonable accuracy, the distance between t
spheres must be large relative to their distance from the observer.

[ i e i
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Figure 8: The distance between two identical spheres, relative to their radii, can be calculated from
their images on the viewing sphere. We can also derive the tilt angle .

This information cannot be derived without the field of view information. If we vary the focal
length of the lens, adjusting the viewing distance so that the front sphere remains a constant size,
the image of the back sphere will change in size.!? The same variation in apparent shape can also
be created by changing the distance between the two spheres. Thus, an algorithm which is invariant
to changes in calibration cannot distinguish barbells with different proportions.

3.3 Why is a conformal projection desirable?

An important property of stereographic projection is that it is conformal. Thus, the shape of a
small region on the viewing sphere is approximately preser in the image, with the errors in the
approximation decreasing towards zero as one considers smaller neighborhoods on the viewing sphere
[27]. As we saw in Section 2.2, projection of small 3D objects onto the viewing sphere approximates
scaled orthographic projection onto a plane. Combining these two facts, we see that the apparent
shape of a small 3D object in a stereographic image is approximately an orthographic projection of
the object onto a plane.

This approximation does not hold for perspective projection of the viewing sphere. In perspective
images, the apparent shape of a small object depends on its location in the field of view. This
perspective distortion is significant for objects which maintain a relatively constant shape on the
viewing sphere, regardless of viewpoint. For example, a sphere always appears circular on the
viewing sphere and in a stereographic image, but can appear as a variety of conics in the perspective
image. A rotationally symmetric object must appear symmetric on the viewing sphere, because
everything involved is reflectionally symmetric in the plane containing the 3D axis of the object and
the center of the viewing sphere. If the object is small, this symmetry is approximately preserved in
a stereographic image. In a perspective image, however, the two sides of a small object may diverge
significantly from symmetry if the object lies far from the optical axis (see [43] and figures 9-10).

For flat 3D objects (or flat faces of polyhedra), the situation is more subtle. A flat 3D object
projects to a wide variety of shapes on the viewing sphere, depending on how it is tilted relative to
the observer. The shape can vary by any perspective transformation [21, 54, 65] or, if the object

12Unless, of course, the spheres happen to be at the same distance from the center of the viewing sphere.



Figure 9: The edges of a set of rotationally symmetric objects, in stereographic (left) and perspec-

tive (right) coordinates. Notice how the symmetries of the lefthand objects are distorted in the
perspective edges.

Figure 10: Edges for a second set of rotationally symmetric objects. The lower right object shows
distortion of symmetry in the perspective image (right) and curving of its axis in the stereographic
image (left). This object also appears (lower center) in the previous figure.

]
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qje
ects the tangent plane at P and the image
onefrom N through a circle centered at
intersections have the same shape.

Figure 11: The stereographic projection line N P ;
plane at the same angle (B) (left). Consider the e
P. The two planes cut this cone at equal angles |

1s small, by a transformation that is approximately affine [34, 47]. Perspective distortion creates
approXimately the same class of shape distortions. T it does not introduce any new variety in the

apparent shape of a flat object but it makes it more difficult to recover the object’s 3D orientation
(tilt).

Furthermore, suppose that one rotates a camera about its lens center. Each object, whether
flat or rounded, retains the same apparent shape on the vies 'ing sphere. Because stereographic
projection is conformal, small objects keep the same sh De In each stereographic image, though they
may change size, translate, or rotate. This property could be useful in matching corresponding bits
of two images, e.g. to glue them together into one ultra-wide-angle view. In perspective images, by
contrast, even small objects change shape as the rotation moves them from the center of the field of
view to the periphery.

3.4 Why does stereographic projection preserve circles?

In addition to the approximate preservation of shape implied by being conformal, stereographic
projection of the viewing sphere projects circles onto circles or straight lines, exactly and no matter
what size the circle is. Recall that a circle on the viewing sphere is the intersection of the viewing
sphere with a plane. A circle containing the point (0,0, —1) must project onto a line because all the
projection rays are coplanar.

To understand the general case, consider figure 11, which shows the projection of point P to
point P’ through the far pole N = (0,0, —1) of the viewing sphere. Let S be the near pole and O
be the origin, i.e. the center of the sphere. Let T be the plane tangent to the viewing sphere at P.
The two angles labelled o must be the same because the segments OP and ON both have length 1.
The angle B between NP and T must be 90 — o because a tangent o a sphere (7) is perpendicular
to the corresponding radius (OP). The angle between NP’ and the image plane is also 90 — « (i.e.
B) because the SN P’ is a right triangle.

Now choose a circle C on the viewing sphere, centered at P. Assume that C' does not contain
N. Consider the cone of rays that start at N and pass through points of C. The cross-section of
this cone must be an ellipse. The image plane and T cut the cone at equal, but opposite, angles.
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The plane containing C' is parallel to the tangent plane at P. Therefore, the intersections of these
three planes with the cone must be the same shape. Since C is circular, they are all circular. This
proof is somewhat informal; see [27] for more details.

3.5 How are stereographic and perspective coordinates related?

If the camera is calibrated, image coordinates can easily be converted from stereographic to perspec-
tive projection, or vice versa. The stereographic projection (z,,y;) and the perspective projection
(%p,%p) of a point on the viewing sphere are related via the following equations (adapted from [32]):

2z, 2yp

(zs,9s) = ( ) ) (5)
L+ /1477 1+ ,/1472

where r, = \//I: + y% and

4z, 4y
4——7’52’4—7'2) (6)

(zp,4p) = (

where r; = \/z2 + 2.

The transformation between perspective and stereographic coordinates is a special type of radial
distortion. Specifically, suppose that a feature point X lies on a ray R starting at the center of the
image. Then equation 5 or 6 changes the distance between X and the image center but does not
move X off R. This is the defining characteristic of radial distortion. This property implies that
most of Tsal’s high-precision camera calibration algorithm [67]-including the critical decomposition
into two stages and the entire first stage-does not depend on whether one’s choice of ideal output
projection is perspective or stereographic.

4 Application to local symmetries

The methods developed in the previous sections can be used to set local symmetry representations
of shape on a firm theoretical footing. Specifically, we will see that the 3D symmetries of an object
project onto symmetries of its 2D outline on the viewing sphere, whenever certain visibility conditions
are satisfied.

4.1 What are local symmetries?

In defining local symmetries, I will assume that we are given a set of edges in the image or a set of
surfaces in 3D. One side of each edge or surface is designated as the “object side” and one as the
“background side.” This designation may come from prior information (e.g. the object is darker
than the background). Alternatively, each object boundary may generate two parallel edges or
surfaces, representing the two ways to label the sides [18, 49]. I will assume that a normal direction
has been computed for each edge or surface point and that the normal vectors always point towards
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edge point is tangent to the sphere,
v from the boundary.

Figure 12: In the viewing sphere, the covariant no
perpendicular to the edge’s tangent vector, and points

Figure 13: Two edge points A and B have a local symmetry if the edges at both points are tangent
to a common circle and both normals point inwards.

151]

the object side of the edge or surface.l® If our edge lies in the viewing sphere, there is a well-defined
3D tangent direction T' at each edge location P. I will define the covariant normal at P to be the
(unique) unit vector which is (a) normal to T, (b) tangent fo the sphere, and (c¢) points toward the
object side (figure 12).

Traditionally [11, 12, 13, 24], two distinct edge points A and B in a 2D image are said to have a
local symmetry if the edge is tangent to a common circle 13) at these points. Some authors
ter of the circle. (See Appendix B
at A and B must be reflections of

for discussion of the degenerate case.) Equivalently, the nc
one another in the perpendicular bisector L of the line AB and both normals must point
(strictly) towards L. I will refer to such points as syn v pairs and to the tangent circle as the
symmetry circle. The symmetries of a flat 3D objes symmetries of its outline in the
plane containing it. It is well known that 3D symmetries of flat objects do not typically project to
symmetries of the 2D outline.

To obtain a useful relationship between 3D and 2D symmetries, we need to switch our attention

131f your Platonic object model has sharp corners, either exclude an infinitely thin line of points along the corner
or treat the corners as slightly rounded.
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to a more general class of 3D objects and do our 2D geometry on the viewing sphere rather than on
a flat image. In general, two points on a 3D surface have a local symmetry if the surface is tangent
to a common sphere (the symmetry sphere) at both points, and both surface normals point towards
the center of the sphere (cf. [13, 25]). So, for example, there is a local symmetry between any pair
of points in the same cross-section of a rotationally symmetric object and the symmetry sphere is
centered on the object’s axis. To use this definition on flat objects, we must assume that they have
some non-trivial thickness, e.g. replace each point of the planar object with a tiny filled sphere.
Each symmetry circle in the traditional analysis is then replaced by a symmetry sphere with the
same center.

I will say that two distinct edge points on the viewing sphere have a local symmetry if

(a) the edges at both points are tangent to a common cii‘cle C,

(b) C is not a great circle, and

. ¥

(¢) their covariant normals point into the smaller of the two regions bounded by C.

(Again, see appendix B for special cases.) If objects are transparent and our camera has a 360 degree
field of view, then a 3D symmetry between points A and B creates a 2D symmetry whenever 4 and
B project onto the object’s outline on the viewing sphere. Conversely, every 2D symmetry on the
viewing sphere corresponds to an infinite class of 3D symmetries (among other possibilities).

4.2 Visibility of individual symmetries

For opaque objects and a real camera system, a symmetry (4, B) is visible in the viewing sphere
image if

(1) The rays from the lens center to A and B are tangent to the surface (equivalently, tangent to
the symmetry sphere), - -

(2) The curvature of the surface along these rays is positive at A and B (so neither point is
occluded locally),

(3) No other part of the surface lies in front of A or B, and

(4) The angular positions of A and B both lie within the camera’s field of view.

Suppose that S is the symmetry sphere for A and B. Ignoring rotation about the center of the
viewing sphere, the space of possible viewpoints is three-dimensional. At any viewing position, a
circular set of points on the symmetry sphere are visible. In order for A and B to satisfy condition
(1), they must lie on this circle. This will be true for a one-dimensional family of viewing positions.
Specifically, the center of the viewing sphere must lie in the plane equidistant from A and B.

Given an angular pesition in this plane, the required viewing distance (relative to the radius of .

the symmetry sphere) can be computed from the angular separation of A and B on the symmetry
sphere. Condition (4) imposes a lower-bound on the viewing distance.

Condition (2) will always be satisfied if A and B are positive curvature elliptic points. It is
satisfied for almost all viewpoints if they are parabolic. If they are hyperbolic, condition (2) is
satisfied for a restricted range of viewpoints, see [37] for details. Except for the obvious special case
of points on the convex hull (cf. [37]), condition (3) is global and, thus, hard to control.
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Figure 14: An elongated region (top) has two boundaries: opposite pairs of points are related by a
local symmetry. In a round region (bottom), there is a single boundary; most or all pairs of points
are related by local' symmetries.

4.3 Symmetry regions

An isolated symmetry pair is of little use. A single 2D symmetry pair may have occurred by random

chance. A single 3D symmetry pair almost never appears as 2 sym metry of the 2D outline. Therefore,
symmetry algorithms primarily interpret symmetries involvin =nded sections of edge or extended
patches of surface. Algorithms for detecting 2D symmetries |15, 17] often require that each region
be long relative to its width to filter out symmetries due tc random alignments of edges.
Specifically, I will define a local symmetry region to be a connected set of symmetry pairs. In

2D, the left sides of the symmetry pairs form a connected curve. as do the right sides. In 3D, the
left sides and the right sides must each form a connected patch

the definitions in [11, 12, 15, 17]; some previous authors [7, 8, 13, 24] have concentrated instead on
axis connectivity. Some types of later processing may ims itional “smoothness” constraints
which bound the rate at which shape parameters change along the region (e.g. [11, 12, 15]): such

constraints are beyond the scope of this paper.

Figure 14 shows some simple 2D symmetry regions. In an clonzated region, the left and right sides
are disjoint. Each Symmetry pair contains one point from - e. In a near-circular region, the
left and right sides are the same curve. Many pairs of points zlated by symmetries, with similar
symmetry circles. A more complex symmetry region may di both types of pairing patterns,
e.g. an elongated region with semi-circular ends. Because there 12y be errors in computed normals,
practical implementations require only approximate symmetry. Thus, large connected symmetry
regions can be formed despite irregularities in the contour

Because the normals in a symmetry pair must point inwards 2 region terminates when two
corresponding sections of edge become tangent to a comn e (rather than a common circle).
This constraint prevents an elongated symmetry region fro oubling back on itself. It also means
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Figure 15: Because normals must point inwards, an elongated region cannot double back on itself
(left) and an undulating boundary is divided into a series of regions (right).

that an undulating boundary tends to be decomposed into a serieg of round regions on alternating

sides of the boundary (figure 15).

Simple 3D symmetry regions fall into three rough categories. On a round object, most patches
on the surface are approximately tangent to a common sphere. If the object is (approximately) a
surface of rotation, the surface along each cross-section curve is (approximately) tangent to a sphere.
Furthermore, if the surface is smooth, this sphere must also be approximately tangent to the surface
at points on nearby cross-sections.!* Finally, on a flat object, most symmetry spheres are tangent
to the surface at only two points. [ will call a set of points X a symmetry patch if there is a sphere
S such that the surface is approximately tangent to S at all points of X and all the surface normals
point inwards.

4.4  When will a symmetry region be visible?

Unlike an individual 3D symmetry pair, a symmetry patch may be visible from a wide range of
viewpoints. For example, consider a cross-section C of a surface of rotation. Assume that the points
of C are elliptic, that C is contained in the camera’s field of view, and that it is not occluded by a
distant part of the surface. The points of C form a circle W on the symmetry sphere, of angular
radius «. The rays from the viewpoint are tangent to the symmetry sphere along another circle Y.
If the symmetry sphere subtends an angle of 23 on the viewing sphere, then the radius of Y is 90— 8
degrees.

The cross-section C will generate a symmetry on the 2D image if W and Y intersect in at least
two points. This will happen if the center of W lies in the band of radius a around Y. Using the
standard formula for the surface area of a zone of a sphere (e.g. [5]), we can calculate the surface
area covered by this band as 27h, where

h = min(1,sin(8 + «)) — max(—1,sin(f — «))

The fraction of the sphere covered by this band, i.e. the fraction of all viewpoints from which C is
visible, is % If o 1s large (the cross-section radius is not changing very fast along the axis of the
region) and 3 is large (the object subtends a small visual angle), then the symmetry will be visible

14This band is widest when the curvature of the surface parallel to the axis of rotation is the same as the curvature
of the symmetry sphere.
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Figure 16: A symmetry patch is visible if the area B it covers on the symmetry sphere intersects
the circle Y of points tangent to rays from the viewpoint, and the intersection contains at least two
points with sufficient angular separation.

a large percentage of the time.!5

It is sufficient to see two points from a symmetry patch, because this is enough information to
reconstruct the patch’s 3D symmetry sphere up to the usual size/distance ambiguity. Specifically,
we first construct the symmetry circle from the two points and their normals. This circle is the
image of the symmetry sphere on the viewing sphere. As we saw in section 3.2, we can then find the
relation between the size of the symmetry sphere and its distance. So, I will say that a symmetry
patch is visible if any pair of points (A, B) from the patch is visible.

It is beyond the scope of this paper to quantify visibility for other types of symmetry patches. To
see how such an analysis might proceed, suppose that (3 is symmetry patch and imagine the points
of G as lying on the symmetry sphere (figure 16), covering some region R. To determine how often
G will be visible, we consider the intersection of R with all circles ¥V with diameter at least 180 — o
degrees, where « is the camera’s field of view.1® The larger an area of the sphere covered by R, the
more often ¥ will intersect R in two points. To generate useful symmetries, R must also contain
subsections that are separated by a sufficient angular distance on the sphere. If the two symmetric
points in the image are separated by too small an angle on their symmetry circle, the parameters of
the symmetry circle cannot be reconstructed reliably from edge information in the presence of noise.
Thus, a cross-section of an SHGC'" will generate a symmetry from many viewpoints if it contains
two extended sets of points approximately tangent to a common circle W and separated by a wide
angle on W (e.g. the ends of an elliptical cross-section, if the el e 1s not too elongated). On the
other hand, the symmetries of flat objects are not typically visible because each symmetry patch
occupies only two tiny patches on the symmetry sphere.

th

To generate an extended symmetry region on the viewing sphere—one which is easily distinguished
from a random alignment of edges—the 3D surface must contain either (2) an extended near-spherical
region or (b) a long connected set of symmetry patches, each of which is visible from many viewpoints.
Surfaces with symmetry regions visible from many viewpoints include:

o Spheres, partial spheres, and ellipsoids,

e Surfaces of rotation,

5I'm side-stepping the issue of what measure one should put on the space of all viewpoints. In particular, it isn’t
at all clear how one should rate the relative importance of nearby views versus distant views, nor whether one should
assume that viewing distance can be made arbitrarily large.

1Y is larger than this, the syminetry sphere cannot lie entirely within our image.

17Straight homogeneous generalized cylinder.
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e Surfaces formed by sweeping a sphere along a space curve, with or without smooth changes in
the sphere’s radius,

e A SHGC whose cross-section meets the conditions described in the previous paragraph, and

o Complex objects formed from the above components.

Surfaces approximately matching one of these models (e.g. a finger, a standard hexagonal pencil)
will generate symmetries that persist over a range of viewpoints but with variation in parameters.
For flat objects and other types of SHGC’s, other techniques are more appropriate: see [21, 47, 51,
94, 58, 59, 60, 65].

4.5 Symmetries in object recognition

Conversely, an extended symmetry region with a non-trivial pattern of changes in circle parameters!®
1s unlikely to arise by accident. Thus, an observed 2D symmetry region can be treated as good ev-
idence of a 3D symmetry region. From any 2D symmetry region, we can reconstruct the angular
position and angular radius of each 3D symmetry sphere in the corresponding 3D symmetry region.
Uncertainty about the shape of the rest of the symmetry patch, together with the depth/size am-
biguity, implies that every 2D outline corresponds to an infinite-dimensional space of 3D objects.
However, if we restrict our attention to a limited class of 3D objects, the ambiguities can be restricted
and the symmetry information converted into useful features for recognition.

Suppose, for example, that our objects are known to be surfaces of rotation. Except where the
surface approximates a sphere locally, each two-dimensional symmetry set contains two edge points
belonging to the same cross-section. Once this correspondence is established, we can convert the
outline to perspective coordinates and use the method in [22, 43, 65] to derive projective invariants
of the outline. The local symmetry algorithm would then replace the narrow-angle approximations
used in [43, 64] to locate points on the same cross-section of a generalized cylinder with circular
cross-section and locate the axis of the region.

As we saw in section 3.2 and ﬁgur'e 6, however, using projective invariants can involve some loss
of information about 3D shape. To avoid this, we can directly construct a canonical representation
of the shape. First, locate a collection K of symmetries whose symmetry circles are centered on a
common great circle of the viewing sphere (a common line in perspective coordinates). For example
a straight axis in a symmetry region'® or a set of adjacent regions could be found using a RANSAC-
type algorithm [52]. Also choose an ordered pair of two distinguished symmetries P and Q from
K (e.g. the first and last symmetries, two pairs sharing a bitangent line, two locations where the
symmetry parameters change abruptly). In general, there will not be a unique choice for P and Q,
so descriptors may need to be computed for several pairs. \

Without loss of generality (just rotate the viewing sphere), we can assume that P’s symmetry
circle is centered at (0,0,1) and that the center of (’s symmetry circle lies in the plane z = z = 0.
We have two free parameters, the radius r of P’s symmetry sphere and the ratio s of the radius of
P’s symmetry sphere to that of Q’s symmetry sphere. These cannot be determined from a single
image prior to model matching. To collapse the first degree of freedom, set r = 1, equating all
objects which differ only in their size. Then collapse the second degree of freedom by setting s = 1,
equating objects which look like foreshortened versions of one another. \

83pecifically, because straight line segments are so common in man-made environments, a single region with straight
non-parallel sides is not, by itself, useful in object recognition.
19 A single region may have more than one axis. See figures 18-19.
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Using the construction from section 3.2, we now have 3D coordinates for the centers of the
symmetry spheres at P and ). This gives us the 3D axis of symmetry. For each symmetry in
K, we can then reconstruct the 3D location and radii of its symmetry sphere and then the radius
of the corresponding circular cross-section perpendicular to the axis of symmetry. We now have a
parameterized description of the 3D surface, from which we can compute any descriptors we like
(cf. [54, 65]). This surface will typically consist of several connected components, separated by
gaps where one cross-section occluded another in the original image. These occlusions often cause
internal boundaries and/or cusps in the occluding boundary, so that the surface may have already
been divided into several symmetry regions by earlier processing.

An advantage of this analysis over previous methods such as (22, 43, 64, 65] is that it extends
in obvious ways to cases where other types of additional information are available to resolve the
depth/size ambiguity. For example, we can remove the restriction that the axis be straight if we
know that the axis is planar or the object is lying on a plane. If the parameters of the plane are
known (e.g. the floor), the ambiguity is entirely resolved. Thus, if a snake crawls onto the floor
of my kitchen, I can confidently determine how large it is and whether it has eaten recently. If it
is lying on a surface that is horizontal but at unknown height (a table), there is a one degree of
freedom ambiguity. If the orientation of the planar surface is also unknown (e.g. a cutting board
propped on a book), we can still solve for the shape, but with a three degree of freedom ambiguity.

5 Finding symmetries in images

The definition of local symmetry given above consists of two distinct components: tangency to
a circle and direction of normals. Because circles on the viewing sphere project to circles in a
stereographic image, pairs meeting only the first condition (see the definitions in e.g. [25]) can be
detected using only stereographic coordinates. If both conditions are imposed (as in [12, 15, 17, 29]),
however, it is necessary to test for both circularity and straightness. Previous algorithms have done
both tests in one image coordinate system (typically perspective), which is accurate only for narrow-
angle images. In this section, we will see that symmetries can be computed for wide-angle images
using a combination of stereographic and perspective coordinates.

Historically, local symmetries and similar low-level grouping operations (e.g. bitangents, edge
segments with parallel tangents) have proved very difficult to compute. The full set of symmetries
(or bitangents, or parallel segments) is clearly O(n?) worst-case: consider a set of many tiny circles
of unit radius, no three centers colinear. Thus, algorithms which compute all symmetry pairs or
bitangents [6, 12, 29, 36, 43, 45] are at least O(n?) worst-case.?® It has been suspected for some time
[15, 17, 19] that the complexity could be reduced by imposing additional constraints, so as to elim-
inate unwanted long-range symmetries, but no algorithms have achieved this cleanly. In addition,
many algorithms are slow [17], complicated [17, 55], have a structure which makes running time
analysis difficult [29, 45] (compare also [10]), or do only very early stages of the symmetry computa-
tion [56]. In this section, we will see that symmetry pairs can be found efficiently by approximating
the edges with near-straight sections (a simplified version of the curvelinear approximation in [12])
and by incorporating a local aspect ratio constraint.

2°The Hough transform algorithm in [43] is not linear in the number of edge pixels, because of its interpolation for
high-curvature points.

N
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5.1 Contour segmentation

The new local symmetry algorithm runs on the output of our Marr-Hildreth edge finder [18, 30].
The edge finder supplies connected chains of edge pixels, parameterized by arclength, together with
normal vectors and signed intensity slope across the edge. Each edge is stored as an array. Each
object boundary generates two edges, with normals pointing in opposite directions. Edges shorter
than 20 pixels are ignored. Orientations are smoothed by convolving the orientation unit vectors
with a Gaussian of standard deviation 4.0 pixels. (The scale of the representation can be changed

by varying this standard deviation, as in [12] and/or the amount of smoothing used by the edge
finder.)

The edges are computed from an image corrected to stereographic projection. At each edge
location, the equations in section 3.5 are then used to compute perspective coordinates. Because
our camera’s field of view is not very large (90 degrees), a.single perspective coordinate system
1s sufficient. For very wide-angle images, it may be necessary to compute coordinates in several
perspective projections. Symmetry analysis for a pair of points would then choose a projection in
which both points lie on the front side of the viewing sphere. Figufes 9 and 10 show two sets of
edges in both coordinate systems.

Each edge is then subdivided into segments that are nearly straight in both perspective and
stereographic-coordinates. Each edge is first divided into segments, each of which spans a 30 degree
range of orientations in stereographic coordinates. When edge orientation changes rapidly, there may
be multiple segments containing the same pixels but having different orientation ranges. Adjacent
segments overlap by two the first and last segments in an edge may overlap more substantially. If
any points on a segment are more than 10 pixels from the line joining its endpoints in perspective
coordinates, the segment is recursively subdivided at its midpoint until this is no longer the case.

Each segment is decorated with various useful information:

e A unique integer ID.
e The ID numbers of the preceding segment and following segment.
e Its orientation range, with -5 degrees added for noise tolerance, stored as two unit vectors.

e Its search length, i.e. the maximum of its length and the lengths of the preceding and following
segments.

e Its endpoints in perspective and stereographic coordinates, and the middle point along the
segment in stereographic coordinates.

e The maximum deviation between a location on the segment and the line joining its endpoints

in perspective coordinates.

Segments shorter than 5 pixels (e.g. in the tips of sharp corners) are not used in symmetry com-
putations. This breaks the chain of pointers to preceding and following segments, implying that
symmetry regions terminate when the curvature becomes very high.

5.2 Testing for symmetry

To determine whether two segments have a local symmetry and to isolate the symmetric subsections,
each segment is approximated by the line segment Joining its endpoints. Two tests are performed:
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e Along what subsegments do the segments face one another (in perspective coordinates)?

¢ Along what subsegments do they have a reflectional symmetry (in stereographic coordinates)?

The subsections meeting both tests are returned as symmetric.

Extracting the facing subsections is straightforward computational geometry. There are only
two subtleties. First, since segments are too short to measure curvature reliably, every segment is
considered to face itself. Second, each segment may curve away from its approximating line segment.
Therefore, to assert that an endpoint of one segment is on the correct side of the other segment,
one must ensure that the endpoint is sufficiently far away from the segment on the correct side,
compared to the maximum deviations for the segments.

To understand the symmetry test, first suppose that.each segment has exactly one orientation.
The direction of the symmetry axis can be computed as the average of the two orientations. The
symmetric sections are computed by projecting both segments onto a line in the axis direction,
taking their intersection, and backprojecting the inter
actually covers a 40 degree range of orientations,
clockwise possible axis orientations. For each extreme
For each segment, the connected union of the section from the clockwise axis and the section from
the counter-clockwise axis contains all points with a possible symmetry to the other segment.

ontd each segment. Since each segment
te the extreme clockwise and counter-
tation, compute the symmetric sections.

orientation ranges. If the segments are
along their entire length. If the segments
' of possible orientations of line segments

tation range of A in each extreme

This test will not work if the segments have overlappi
identical or overlapping, they are assumed to be symms

the orien
orientation of R and takes the connected union T of the
possible symmetry (as a whole; the algorithm does not attempt to extract symmetric subsections)
if T' intersects the orientation range of B.

¥

Because all points in a segment are collectively assigned a2 40 degree range of orientations, this
. This ensures that symmetry pairs
noise or shape irregularity. It also
e algorithms may wish to refine
ctions with smaller orientation
(29, 45] to refine the pairing.

algorithm computes an over-estimate of the set of symme
can be assembled into connected regions in the presence o

5.3 Symmetry parameters

tes the parameters of their symme-
oximated by the two straight
{4 its midpoint. From these six
=d. The full set of symmetry circles

=cond, also the second and third,
i.e. the average length of the

If the segments have a local symmetry, the algorithm then compu
try circles using stereographic coordinates. Each edge s
line segments joining three points: the two ends of the
points, the center and radii of three symmetry circles are
can be estimated by linearly interpolating between the fir
circle estimates. For each pair, we also compute its normalized lengih,
sides divided by the average symmetry circle radius.

D

=

ause the symmetry circle in
ing sphere. Previous local

This algorithm estimates the parameters of the symmetry ci
stereographic projection is the image of the symmetry c

symmetry algorithms have concentrated on computing the axis of an elongated region or the center
of a round region. The axis point for two symmetric edge points A and B can be defined as the center
of the tangent circle [7, 8, 13, 24, 17], the midpoint of AB [11, 12], or the midpoint of the circular



Fleck 27

% | 7

Figure 17: The local aspect ratio of this symmetry pair is .

arc from A to B [41, 42]. In general, none of these points is the inrage of the corresponding point
on the viewing sphere. However, existing methods for high-level descriptions of symmetry regions,
reuniting regions separated by occlusions, building subpart structures and the like (3, 15, 29] could
be reworked using the circle parameters.

Not all symmetric pairs of segments generate reliable estimates of the symmetry circles. For
example, the segments may be too short to produce reliable orientations. If the segments are too
close to parallel (less than 60 degrees difference between the orientations of the left and right sides),?!
the center of the circle cannot be located reliably. Such non-supporting symmetries are useful as
connectors when building symmetry regions, particularly circular or semi-circular regions. However,
a symmetry region cannot be entirely composed of non-supporting pairs.

5.4 Local aspect ratio

Suppose that we search for symmetries to a fixed segment A. The larger a neighborhood of A we
search, the greater the chance that a symmetry to A will occur by accident. Furthermore, symmetries
between short, widely-separated segments do not seem salient to human observers.22 Therefore, local
symmetry algorithms [15, 17] require symmetry regions to have a good aspect ratio, i.e. that they
be long relative to their width.

The new algorithm uses a local aspect ratio constraint to avoid computing most of these unwanted
symmetries. Specifically, the local aspect ratio of two symmetric segments is

o the length of the shorter segment, projected onto the axis of the é\ymmetry, divided by

o the average distance between corresponding points of the two segments

(figure 17). In the current implementation, the aspect ratio of each local symmetry is required to

be at least M = ggf Since each segment spans a 30 degree range of orientations, this is the aspect

ratio of segments in a circular region. This constraint subsumes the curvature constraint used in

[12].

211n a region with parallel sides, the orientations are opposite because both normals point inwards.

22This is not a subtle judgement. Axes generated from such symmetries look like random algorithm mistakes. It
takes some effort to convince a researcher working in another area of computer science that these are symmetries of
the input edges.
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A symmetry pair can pass the aspect ratio test in two ways. The symmetry may pass because
the actual lengths of its two segments are large enough. Alternatively, it may pass if the search
lengths of its segments (see definition in section 5.1) are used in place of the segment lengths. Such
symmetries are allowed because the decomposition of an edge into straight segments occasionally
creates short segments at the ends of otherwise acceptable regions. These symmetries are used to
connect other symmetries or extend symmetry regions, but they are considered non-supporting.

5.5 Bucket retrieval

The local aspect ratlo test is used to limit the search for symmetry pairs. The new algorithm
considers only symmetry pairs which have some hope of passing the aspect test, reducing the worst-
case number of pairs considered to O(L), where L is the length of the input edges. Without loss
of generality, we can find each pair-of segments by searching a neighborhood of the segment with
shorter search length. Suppose that the shorter segment A has search length s. To satisfy the aspect
ratio test, some point on the second segment must be < Ms - pixels from some point on A. Distinct
edges do not overlap and the edge finder limits the density of edge pixels.?> Therefore, the number
of segments with length > s within Ms pixels of A grows linearly with s.

Suppose that all segments are disjoint and s is the actual length of each segment. Then by
integrating this limit over all segments A, we see that the total number of symmetry pairs passing
the aspect ratio test is O(L). The overlap between adjacent segments adds, at worst, a multiplier
of two. The difference between search length and segment length multiplies the estimate, at worst,
by three. So neither of these considerations affects the asymptotic complexity.

These pairs can be located efficiently using a pyramid structure and a bucketing algorithm similar

to that in [2]. Let T'(k) = 10(v/2)* for k > 0 and T(—1) = 0. At each level k of the pyramid, the
image is divided into non-overlapping square buckets of width | .Lf +0.5)T(k). Level k will be used
to find pairs for segments whose search length is between T(k—1) and T(k). A segment A of search

length s is stored. into each level k for which T'(k — 1) < s V\”’énﬁvpr A intersects. a bucket X,
A is stored into X and its eight neighbors. This implies that { is put into a number of buckets
proportional to its search length. Thus, the total work to put ; segments into buckets is O(L).

B

For each segment A of search length s, we retrieve the segments from the bucket containing the
midpoint of A, from level k where T'(k — 1) < s < T(k). This set contains segments from a wider
area than A’s 1deal search neighborhood, so we must check th 2ch candidate pair actually satisfies
the aspect ratio constraint. However, the set of candidates d from the idea by only a constant
factor, so the difference does not aﬂect the asymptotic running time. To avoid computing the same
symmetry twice, we reject any candidates that are shorter than _{ and any candidates of the same
search length whose ID number is<ess than A’s.

et

5.6 Region formation

When a symmetry pair is detected between parts of two segments, new segments are created for
the symmetric subsections. These shortened segments inherit the ID of the original segment,?* as

well as the ID numbers of the next and previous segments. The new pair of segments is stored in a

23Even using inter-cell boundaries the digitized representation prevents you from packing more than 4 pixels of
boundary length per image pixel. Fine-scale edge finders typically pack at r 1 unit of boundary per two image
pixels, due to e.g. the Nyquist limit. Edgefinders run with larger smoothing scales [26] or texture edgefinders (e.g.
[20]) may force adjacent boundaries to be separated by many pixels.

24 This is important; the following algorithm will not work if a new ID is assigned.
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hash table, indexed by the list of ID’s of its segments. The pair is also stored in reverse order. Two
symmetry pairs are considered connected if their left segments overlap and their right segments also
overlap. This can be true only if the left segment of the first pair has the ID number given in the
next or previous field of the left segment of the second pair, and similarly for the right segments.
Using the hash table; we can retrieve the (at most 4) pairs connected to a pair (A, B) in expected
linear time.

Each symmetry region is a maximal connected set of symmetries which contains at least one
supporting symmetry. The symmetry pairs (A4, B) and (B, A) are not regarded as distinct in the
definition of a region, but the region-finding algorithm represents them as distinct. To find the
regions, we iterate through all supporting symmetries. For each supporting symmetry (A, B), we
check whether it is still in the hash table. If so, we remove its connected component. If this doesn’t
contain (B, A), we also remove the connected component for (B, A) and return the two components
together. This algorithm is linear in the number of symmetry pairs.

The connected component algorithm is based on a function that retrieves the maximal connected
set of pairs with first element X, including a given symmetry (X,Y)s I will refer to such a set as a
rib. The connected component starting at (A, B) is represented as a binary tree, where each node is
arib. The left (right) child of a rib with left side X is a rib whose left sides is the segment preceding
(following) X. Within a rib, symmetries are listed in order of their second elements. The connected
component starting from (A, B) and the one starting from (B, A) represent the same region, with
the same unordered symmetry pairs, but organize the symmetries into different rib structures.

The rib structure can be used to compute basic shape properties. For example, we can define
the normalized length of a rib to be the maximum of the normalized lengths of the symmetry pairs
in it. The normalized length of a region is then the sum of the normalized lengths over all ribs
(from both halves, if the region consists of two connected components). This is closely related to
the aspect ratio used in [15] but is incremental: adding more pairs to a region always increases its
normalized length. The algorithm filters the raw connected components and returns a region only
if its normalized length is at least 1.0 and both of its sides have lengths at least 20 pixels. This
post-filtering can, of course, easily be tuned to the requirements of the user.

5.7 Results

Figures 9-10 show the symmetries con%puted for the edges in figures 18-19. For display purposes,
each symmetry circle is represented by its center location. To make the display easier to understand,
symmetries have been sorted by the contrast of their edges: both sides dark, both sides light, various
hybrid cases. Because all the objects happen to be lighter than the background in these examples
and there are few internal boundaries, this approximately separates the object regions from the
background regions. The symmetry algorithm has successfully marked the axes of elongated regions
and the centers of round regions. It has grouped the edges into a small number of connected regions,
suitable for computing region descriptors, assembling into complex regions, and identifying objects.

The algorithm is worst-case expected time O(L+ A+ N) where L is the length of the input edges,
A 1s the area of the smallest rectangle containing these edges, and N is the number of segments.
The number of symmetries is proportional to the density of edges in the image, so it should ideally
be combined with a texture edge finder that guarantes a substantial spacing between adjacent edges
as in [20, 38, 39]. The code is written in Lucid Common LISP and not heavily optimized. Our
IBM RS6000 workstation requires 18 seconds to process the example in figure 9 (417 segments, 3483
symmetry pairs) and 16 seconds for example in figure 10 (345 segments, 2319 symmetry pairs).2®

25These times do not include the time required to correct images using camera calibrations or run the edge finder.



Fleck 30

Figure 18: The 71 symmetry regions computed for the first example. The edges and the centers of the
symmetry circles are shown for each region. These symmetry centers include (only approximately,
see section 5.3) the centers of round regions and the axes of elongated regions and corners.
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Figure 19: The 48 symmetry regions computed for the second example.
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The new local symmetry algorithm has a slight asymptotic advantage over the local convexity
grouping algorithm in [61], though they seem to run at about the same speed for the input sizes
typical in vision applications. Unlike local convexity grouping, curvature sign descriptions (e.g.
[34, 46, 53]), or corner detection (e.g. (1]), local symmetries can relate pairs of segments that are
not adjacent. The new algorithm is substantially faster (for large inputs) than the O(n?) algorithms
used to compute bitangents [36, 43, 51], local symmetries (12, 15], and skew symmetries [47]. The
change in asymptotic complexity between [12, 15] and the new algorithm is primarily due to the
local aspect ratio constraint. )

6 Conclusions

We have seen three things in this paper. First, spherical projection represents, in a uniform manner,
all the information available in a calibrated image. This makes it a convenient imaging model for
theoretical analysis of shape algorithms. In particular, abstracting away from perspective projection
helps in analyzing properties which may be distorted in flat images and in assessing how much
information (section 3.2) is lost when the camera is not calibrated. We have seen that exact relations
between 3D and 2D exist not only for properties derived from straightness, but also for properties
~derived from circularity and for hybrid properties such as local symmetries.

Second, there are several distinct ways to project the spherical image onto a plane, each preserving
different properties (straightness, circularity, uniform lighting). For wide-angle images, stereographic
projection miay be a better general-purpose model than the traditional perspective projection, be-
cause it is conformal, distorts intensity values less, is at least as accurate a model of available
wide-angle lenses, and can represent very wide-angle views (> 180 degrees).

can be computed from a calibrated
coordinates. The algorithm is asymp-
number of output regions. Thus, local
lysis, supplementing features such as

Finally, we have seen how local symmetry representati
image using a combination of stereographic and perspec
totically linear, fast in practice, and produces only a sm
symmetries could be used in the early stages of shape a:
bitangent lines, corners, and zeros of curvature.
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Appendix A: Camera calibration

Camera calibration is required to convert image coordi
Researchers may be discouraged from calibrating thei
For example, the methods of Tsai and Lenz [40, 57] requ
micrometer stages. However, for low-precision applicati
it is sufficient to remove visible, gross distortions S ge. I will present a simple, low-tech
procedure for doing this, to ensure that no one t} ey have an excuse for tolerating gross errors
in images (e.g. visible radial distortion) when th =y have physical access to the camera.

high-precision calibration targets and/or
. many object recognition systems),

To prepare the pictures in this paper, I used estimates of the intrinsic camera parameters: f,
g, image center, radial distortion, and intensity Camera manufacturers attempt to put
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Figure 20: An image of radial graph paper used to calibrate radial distortion.

the image center in the middle of the digitized image. Tsai’s results[40, 57] suggest that the image
center can be relatively far (e.g. 25 pixels) from this ideal position. However, his analysis suggests
that the errors in 3D measurement created by the misplaced center are no worse than those created
by edge finder errors (digitization, shadows, smooth shading). Therefore, I simply used the center
of the image.

From the standard proportions of a video image (4:3) and the dimensions of the image produced
by the framegrabber (505 by 470), the ratio of g to f should be about 1.24. The same value (£0.01)
was obtained by placing a table-tennis Jall in the center of the field of view and computing its
elongation (using moments). The field of view (which determines f) was given by the lens supplier
as 93 by 72 degrees. I confirmed this by measuring the apparent size of a planar set of hand-ruled
markings,?® held perpendicular to the viewing direction at a known distance from the lens. The
estimates were very close (within 2 degrees).

This left the radial distortion parameters to be calibrated from scratch. A sheet of radial graph
paper, held flat and perpendicular to the viewing direction, was photographed approximately cen-
tered in the digitized image (figure 20). I marked (by hand) the center of the pattern and four points
at each of two rings (one near the corners of the image, one intermediate), as well as the center of the
pattern. Radial distortion was modelled by an odd symmetric, 5th order polynomial (as in Tsai).
The two distortion parameters?” were computed (by direct algebra) from the average distance from
the center to each ring. Figure 2 shows that this calibration removes most of the curvature from
straight lines.

Finally, for some applications, it may be useful to calibrate the drop-off in intensity between
the image center and the edges. As discussed in Section 2.4, wide-angle perspective lenses suffer
substantial changes in illumination between the center of the image and the periphery. To measure
the variation in illumination, a uniform intensity field must be projected onto the lens. I used images
of a blank, evenly illuminated piece of paper taken through a diffuser (cut from a translucent plastic
jug) over the lens.?® While professional equipment would be desirable, even this procedure reveals
that images from our narrow-angle lens have substantial variation in illumination level. The lens

26 The markings on rulars aren’t readable in our digitized images; black magic marker lines are.
27The polynomial has three coefficients, but one degree of freedom determines the size of the output image.
28In retrospect, a light table might provide more uniform lighting.
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used for the figures in this paper, however, has substantial barrel distortion and, thus, its output
has nearly uniform illumination even before calibration.

Appendix B: Special cases for symmetry definitions

The local symmetry definitions given in section 4.1 do not handle the case where the two edge or
surface points are the same. These degenerate pairs are important because their presence or absence
affects the connectivity of the space of symmetry pairs, which changes the qualitative structure of
which connected regions are created (as in section 4.3). A partial round region (figure 14, bottom
right) contains one connected set of symmetry pairs if all edge points symmetric to themselves. If
they are not, it contains two connected sets, one consisting of the symmetry pairs with the first
point clockwise of the second and one containing the rest. On the other hand, if every point forms
a local symmetry with-itself, near-round symmetry regions will not terminate when the curvature
doubles back on itself.

We can define when a pair (A4, A) has a local s_vmmé\tr;' using an infinitesimal model of space
[33]. I will say that a point A on the viewing sphere has a local symmetry with itself if it has a local
symmetry with some point B infinitesimally close to A. This is equivalent to saying that A has a
two-point contact with a (non-great) circle and the normal at A points into the circle. If you orient
the boundary with the normal pointing left, this happens whenever the curvature at A is positive.

Similarly, a surface point A has a local symmetry with itself if it has a local symmetry with some
point B infinitestimally close to A. In this case, A may have a variety of local symmetries with
distinct symmetry circles, depending on the direction of B relative to A. The symmetry between A
and B projects onto a symmetry of the outline opthe viewing sphere if both A and B are on the
boundary of the object (the rays from the lens center are tangent to the surface at both A and B).

This is one possible way to handle these degenerate pairs, but not the only way. It is beyond the
scope of this paper to determine whether it is the best. )
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