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Mobile robots are a paradigm of the challenge of systems in-
tegration in Robotics. We discuss work at Oxford on the de-
velopment of an Autonomous Guided Vehicle that can acquire
free-standing pallets and can clean warehouses. The work is
based on a commercially-available, free-ranging AGV that can
plan paths and sense its position using an infrared laser triangu-
lation system. We describe work aimed at providing the AGV
with: vision, sonar, and a direct ranging sensor; the ability to
integrate these sensors; and 3D geometric reasoning capabili-
ties.

Introduction

The challenge of systems integration is ubiquitous in Robotics,
in topics that seem, at first sight, to be completely different:
sensor-based assembly; compliant process control; legged lo-
comotion; and, perhaps most comprehensively, path-planning
and guidance of mobile robots. Integration is necessary because
actuators need to be integrated with sensors and with systems
that can reason about geometry and forces. Integration is also
necessary because a system that combines the processing of
several sensors, or sensor modalities such as stereo and motion,
can overcome the inadequacies of each individual sensor. It
is partly for this reason that there has recently been a spate
of mobile robot research projects, also partly because another
round of system building is considered timely by some Robotics
researchers and by some fundjng agents. Outside research lab-
oratories, the use of Automated Guided Vehicles in industry
tripled in 1985 alone (Hollier 86), and they constitute one of
the fastest growing sectors of the Robotics business. This pa-
per reports work on an Autonomous Guided Vehicle (AGV)
at Oxford University. The work springs from a need and an
opportunity.

e The opportunity arises because the FAST Division of the
GEC Company has recently marketed a free-ranging AGV
(constructed by Caterpillar) that is designed for the move-
ment of material in factories (Figure 1). The AGV is
free-ranging in that it does not require specially prepared
roadways or wire guides, it can plan alternative routes to
a goal (say, to a pallet or to a machine tool) and it can re-
plan when it is confronted with an unexpected obstacle as
detected by the touch bar on the front of the AGV. The
GEC AGYV plans movements in a 2D representation of
the factory floor. It is equipped with a rotating infrared
laser scanner that reads bar codes attached to the factory
wall. By reading three or more bar codes it can find its
position by triangulation. The AGYV is accurate to better
than half a centimetre over thirty metres. Though odom-

.etry is available to the AGV controller, it is rarely used
in practice because of wheel slippage on factory floors.
The AGV communicates over a radio link to a control-
ling computer, which maintains a “map” of the factory
layout that includes details of processing centres and the
“roadways” between such centres. The system software
can plan a path between processing centres that avoids
obstacles (including other AGVs). The GEC-Caterpillar
system is an impressive advance on the technology and
controlling software of industrial AGVs. GEC have gen-
erously donated an AGV to the Oxford Robotics Research
Group.

o The need arises because the GEC AGYV, like every other
mobile robot, is limited in scope. The primary application
of the GEC-Caterpillar AGV is in the devel t of flex-

Figure 1: The GEC Autonomous Guided Vehicle. See text for
details.

ible manufacturing systems in which parts and partially
manufactured objects are individually routed through a
series of processing centres.. For many such applications,
the sensing and planning capabilities of the GEC-Caterpillar
AGYV may well be sufficient (though operating machinery
has already posed problems for the infrared sensors). For
some applications, however, the sensory capabilities, and
as a result the planning capabilities, clearly need to be
augmented. The GEC AGV can accurately locate itself
within its known environment as specified by the set of
bar charts, whose locations are accurately determined at
set-up time. The AGV is cannot sense objects that are
not in pre-determined positions other than by colliding
with them, and even in that case it simply assumes that
the obstacle fills an entire lane of a roadway through the
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factory. Similarly, the AGV’s representation is restricted
to a two-dimensional “bird’s eye view” of the factory lay-
out. It is incapable of 3D reasoning of the sort required
for stacking and palletising.
For these reasons, our work is aimed at extendmg the GEC
AGV’s repertoire to the following applications:

1. The GEC-Caterpillar AGV is regularly commanded to
move to a place where it can pick up a pallet for deliv-
ery to a processing centre. Typically, pallets are placed
by fork-lift trucks. Inevitably, they are positioned inac-
curately and sometimes the wrong way round. Often,
several pallets accumulate at the reception centre, and
this complicates the pick-up procedure. We intend to use
a mixture of range sensing and vision to determine the
position and configuration of a pallet. The information
produced by our programs should support spatial reason-

 ing to determine which of several pallets should be picked
up, and how.

2. It is'intended that the GEC-Caterpillar AGV will be used
for applications such as cleaning a large, unattended area.
Related applications include warehousing and crop har-
vesting. So long as the “avenues” to be cleaned are clear,
the AGV can perform its job predictably and well. Ob-
stacles, however, pose a problem. Consider, as a typlcal
domain, clearing a baggage handling area at a major air-
port: if the obstacle is determined to be an item of lug-
gage, it should be pushed gently out of the avenue; but
if the obstacle is a trolley, a slight deviation should be’
planned to take the AGV around it. Note that only a few
different types of obstacles may be expected and this in-
formation can be utilised in the interpretation programs.

In our current design, the AGV will be equipped with vi-
sion, a thirty-two element sonar system (Steer 85), and a novel
ranging device (Reid, Rixon, and Messer 84). The vision pro-
cesses, we are developing include mixed active/passive stereo,
motion, and shape from contéur. Progress in vision is de-
scribed in the next section. The responses of the various sensor
processes are being integrated using the methods of Durrant--
Whyte, and progress is sketched in Section 5. The geometric
capabilities of the enhanced GEC AGYV are being provided by
the S-bounds technique of (Cameron 84) and recent ‘progress,
including a computer model of the AGV environment at Ox-
ford and path planning algorithms for the computer model],
are described in Section 4. Work on sonar and ranging will
be reported elsewhere. Clearly, an AGV of the type we are
constructing demands computational power in excess of that
provided by serial processors of reasonable cost (M68020 Work-
stations for example). We are implementing several algorithms
on a SIMD/MIMD processor, called the Disputer, designed by
(Page 87) and which consists of an array of Transputers coupled
to a SIMD engine that implements RasterOp (alias BitBlt) as
a primitive. The Disputer is described in Section 3.6

Rich representation of image structure

This section describes some of our recent progress in vision.
We begin by noting that representations that capture some the
tight constraint available at colour and texture edges and at
loci of two-dimensional image change potentially support fast

algorithms for the computation of motion, shape from contour,
and stereo (see (Brady 87) for more details). We then show
that the information we seek can in fact be computed reliably.
First, we describe Fleck’s Phantom Edge Finder (Fleck 87),
and we sketch some recent work on the differential geometry of
image surfaces by (Noble 87). Then we introduce the work of
(Forsyth 87) on a system that can detect and describe colour
edges. Finally, we describe a powerful SIMD-MIMD processor
which has been constructed at Oxford on which the algorithms
described in this Section are being implemented.

Seeds of perception

Not all information is created equal. Different locations in an
image (or range image) offer different levels of constraint to
visual processes. Generally, a region of an image that is the
projection of a portion of a smooth surface imposes less con-
straint on visual interpretation than do one-dimensional loci
of change, which often correspond to visual edges. Informally,
we shall refer to loci of one-dimensional intensity change as
“edges” despite the fact that the step edges ubiquitously stud-
ied in computer vision are only one of a number of important
kinds of change (Canny 83) (Ponce and Brady 87) (Asada and
Brady 86). Edges offer even more constraint if they can be elab-
orated by descriptions that relate to important visible surface
characteristics such as texture or colour (see below). We call
regions that correspond to smooth surface patches loci of zero-
dimensional change, and they are roughly characterized by two
large eigenvalues in the image autocorrelation function as the
image “looks” the same in all directions. Similarly, we call edges
loct of one-dimensional change. By analogy, the autocorrela-
tion function has a large eigenvalue whose eigenvector lies along
the edge and a small eigenvalue whose eigenvector lies in the
direction of the normal to the edge. Similarly, we refer to cor-
ners, points of occlusnon (eg T-junctions and X-junctions), var-
ious curvature maxima, and configurations of edges that have
nearby terminations as loci of two-dimensional change.

This observation suggests that the computation of the pa-
rameters of a visual process might be computed most effectively
by basing that computation first on loci that offer most power-
ful and then decreasingly powerful constraint. Often this cor-
responds to working from loci of two-dimensional change, then
on loci of one-dimensional change, and finally on loci of smooth
change. Indeed, it seems possible that models can be invoked
very early in this computation, possibly even on the basis of the
determination of the most constraining information available in
the image. This suggests in turn that the refinement of model
invokation and the determination of rich image descriptions can
proceed hand in hand. According to this broad scheme, points
of tightest constraint are seeds of perception from which are
grown more extensive descriptions of change and, eventually,
image descriptions. (Brady 87) has explored this theme in a
number of visual problems: shape from contour; optic flow and
structure from motion; stereo; shape from shading; and model-
based recognition of objects. We summarise the main results
here.

The computation of shape from contour is one of the most -
powerful passive ranging techniques in human vision. Analysis
has concentrated mostly on smooth, planar contours. However,
the determination of shape from contour is most effective when
there are curvature discontinuities along a curve. Consider a
planar curve «(s) that is imaged after undergoing a general
affine transform T, that is, a translation, rotation, and scaling.
Under affine transforms, as well as under orthographic or per-



spective image projection P, the zero-crossings and curvature
peaks of 7y appear as zero-crossings and curvature peaks of the
image of P(T(7)) (see also (Marr 77) (Huttenlocher and Ull-
man 87)). In general, metric quantities such as angles, lengths,
and ratios of lengths associated with the shape v are not pre-
served in P(T(v)), and so they are of limited usefulness for
determining shape from contour. There are, however, at least
two constraints that can be used to effect the determination of
« from its oriented projection P(T(7)): -

1. the order constraint: the order of curvature changes around
the projected planar shape is unaffected by affine trans-
formation. Other shapes may occlude the shape of inter-
est, as for example when an aeroplane is partly occluded
by cloud. In such cases, curvature changes not associated
with the shape of i mterest may obtrude into the curvature

change sequence; nevertheless, subsequences of curvature
changes associated with the shape to be recognised are
generally visible.

2. the type constraint: there are many different types of cur-
vature change; for example, Asada and Brady consider
corner, crank, end, smooth join, bump and dent, whereas
(Hoffman and Richards 82) propose a number of different
codon types for representing curvature changes. Under a
broad range of values for the scaling factor of the affine
transformation (determined by the object shape and by
the v1ewmg conditions), the type of a curvature change
of 7 is the same as that of the corresponding curva.ture
change in P(T('y)) For example, in Asada and Brady’s
notation, the projection of a transformed crank change is
typically a crank.

Asada and Brady implemented an unpublished program
that recognised a variety of shapes (aeroplanes) that had un-
dergone affine transformation and partial occlusion. The model
was represented as a sequence of curvature changes, each with
an associated type. Recognition consisted of a Waltz-like la-
belling of curvature changes to match subsequences of the cur-
vature changes found in an image to subsequences of the model.
Significantly, though not surprisingly, composite types such as
cranks and ends were most effective for constraining the subse-
quence match. '

Shape matching and recognition based on local salient fea-
tures by Asada and Brady and by Turney, Mudge, and Volz
may be contrasted with the approach of (Grimson and Lozano-
Pérez 86). They argue that matching based on salient fea-
tures is unreasonable when data is noisy (precludmg the accu-
rate computatlon of salient features) or when objects are over-
lapped (salient features are more likely to be occluded than
gross features). There is a law of excluded middle operating
here: salient features cannot be relied upon for recognition, for
the reasons advanced by Grimson and Lozano-Pérez. However,
recognition can be more effective, reliable, and efficient if such
salient. features are available. Recently, working in‘ our Labo-
ratory, (Stem 87) implemented a recognition program that was
a blend of (Turney, Mudge, and Volz 85) and (Grimson and
Lozano-Pérez 86). Figure 1 shows a typical recognition result
obtained by Stein’s program.

Most work on optic flow is based on the motion constraint
equation:

It

N-p:w (1)
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Figure 2: a. Outline of a set of overlapped shapes. b. Key
shapes found in the pile shown in a.

which is a first-order Taylor series expansion of I(x+6x,t+
6t) (Nagel 87). In this equation, #(x) is the optic flow field and
N is the image unit normal VI/||VI||. Since the image gradient

IVI]} occurs in the denominator of the motion constraint equa-
tion, the computation of N p(x) is poorly conditioned unless
|V 2{|(x) is large. Often, points x at which the gradient is large
correspond to edges. This is the basis of Hildreth’s (Hlldreth
84) scheme for the computation of visual motion. Her algo-
rithm identifies points x at which the image gradient is large
with zero-crossings of a Laplacian of a Gaussian filter (Marr
and Hildreth 80). The main novelty of her approach is based
on a theorem that states that if 4(s) is a closed contour (as
zero-crossing contours must be unléss they are thresholded or
cross the image boundary) then there is a unique optic flow
field p(x) that minimises the smoothness expression:

du
f (ds) ds

so long as the optic flow is different at at least two dif-
ferent points along the closed curve. Hildreth combines the
edge smoothing term with the motion constraint equation us-
ing a Lagrange multlpher, and solves the resulting minimisation
problem using a conjugate gradient descent algorithm, Thls
minimisation algorithm is inherently sequential (Gong 87), ren-
dering it difficult to implement Hildreth’s algorithm in parallel.
One way to proceed is to replace the conjugate gradient algo-
rithm by a scheme such as Terzopoulous’ multigrid relaxation
algorithm (Terzopoulos 83) or graduated non-convexity (Blake
and Zisserman 87). We are exploring an alternative approach.

Nagel (Nagel 87) (Dreschler and Nagel 82) has shown that,
in practice as well as principle, the full optic flow field is com-
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putable at what he calls “grey-level corners”. Noble (Noble 87)
critically analyses Nagel’s grey-level corner model. Recently,
Nagel (Nagel 86) (Nagel and Enkelmann 86) has shown that
the smoothness assumptions underlying the algorithms of Horn
and Schunck, of Hildreth, and others amount to special cases of
an “oriented smoothness” assumption that is implicit in the use
of higher order derivatives. We have proved a generalisation of
Nagel’s result (see (Brady 87) for the proof.)

Theorem 1. If H(x) is the image Hessian, and « is the
(planar) curvature of a level contour of the intensity function
whose tangent is T and whose normal is N, then

(NTHT)N - p = ||VI||&T - p.

Since T-u is required to compute the full flow field, it follows
that

1. the full optic flow can be computed at any location along
a level contour (including zero crossings) at which the
curvature is non-zero.

2. the reliability, or numerical conditioning, of the computa-
tion of the full flow increases as the curvature increases.
Hence it is most reliable at corners.

Nagel (Nagel 87) suggests using the full flow field at cor-
ners to determine the optic flow elsewhere. This makes sense
since the computation is most well conditioned at those points.
Dreschler and Nagel write down the second spatial derivative
and first temporal derivative of the flow field everywhere in the
image. They note the crucial role played by the image Hes-
sian. This is to be expected from elementary fluid mechanics
(Landau and Lifschitz 59). Similarly, in a series of theoretical
papers, Koenderinck and van Doorn [1975, 1976, 1981, 1985,
1986] have noted invariant properties of the motion parallax
field due to the movement of rigid bodies relative to an ob-
server. Barnard and Thompson (Barnard and Thompson 82)
have pursued a similar approach. Similarly, (Davis, Wu, and
Sun 83) have studied the motion of image corners in the rela-
tively easy case of images of moving polyhedra.

Returning to Hildreth’s computation, we noted above that
zero-crossing contours are closed as is required for the appli-
cation of her main theorem. In general, however, zero-crossing
contours of a Laplacian-of-a-Gaussian filter do not necessarily
belong to a single object, so that motion smoothing can produce
poor results. The Laplacian-of-a-Gaussian does not provide as
good an edge map as is produced by a directional operator such
as Canny’s. In turn, Canny’s edge map is not as good, partic-
ularly at loci of two-dimensional change, as that produced by
Fleck’s phantom edge finder (Fleck 87). Although Hildreth’s
theorem relies upon closed contours, it is straightforward to
show that:

Theorem 2: If the full optic flow is specified as u(s1) = p1
and p(sz) = p2 at two points sy, s3 along a level contour, then
there is a unique flow field p(s) which minimises Hildreth’s
edge smoothness integral and satisfies the given boundary con-
ditions. O

Theorem 2 can be used to speed the convergence of Hil-
dreth’s conjugate gradient scheme by restricting it to portions
of contours between loci of two-dimensional change at which
the full optic flow field can be computed. Between such loci,
one might either:

1. Use the Hessian-based formula developed in Theorem 1
directly. This would be a bad idea because the computa-
tion of T - p is poorly conditioned when the curvature is
small.

2. or, develop a relaxation formula to interpolate the optic
flow between known values p1, p2 as in Theorem 2.

We are pursuing the latter approach. Note that the situa-
tion is trivial for straight edges for which the optic flow linearly
interpolates the values at the corners (Murray, Castelow, and
Buxton 87). More generally, it is easy to show that:

(T-w)(s+86) = (T-u)(s) +6sx(N-p) ()

Note that §sk = a, the incremental change in the tangent
angle along the curve.

In its usual formulation (Buxton 87), the geometry of stereo
is a simple case of the geometry of 3-d rigid body motion. This
assumes that the stereo cameras have previously been recti-
fied, perhaps mechanically. The term “stereo” vision is also
coined for stereo-mapping and aerial reconnaisance in which
the aeroplane motion between successive images is well approx-
imated by a translation, rotation, and magnification in the im-
age plane. In such applications, rectification may or may not
be a separate pre-process prior to stereo matching (Hannah 80)
(Gennery 79). Rectification processes typically determine the
global image rotation, magnification, and translation by apply-
ing a least squares process to a suitable set of sampled points x},
where i = 1,2 denotes the image from which the sample point
is taken. The sample set needs to be sparse (for efficiency) and
sufficiently constraining to determine the rectification param-
eters. Points with low autocorrelation are often chosen as the
sample set.

Evidently, rectification can be viewed as a partial stereo
match. Indeed, some authors have based stereo algorithms on
the sparse point sets that are also suitable for rectification. In
perhaps the earliest example of this (Moravec 77) developed an
“interest operator” that isolated small image areas with large
intensity variation in the four principal directions. His algo-
rithm worked from a coarse to a fine scale choosing the fifty
most “interesting” points to match in order to compute a rough
range map for his roving vehicle. A variation of Moravec’s op-
erator was developed and used by (Hannah 80) in her work on
aerial passive navigation and by (Barnard and Thompson 82)
in their work on optic flow.

Moravec’s stereo matcher restricted attention to a few points
for reasons of efficiency. This may not be the only reason to
base a stereo matching algorithm upon seeds that are loci of
two-dimensional intensity change. Recently, Rogers has noted
that the (relative) disparity between two matched scene points
varies inversely with the square of their depth difference (see
(Brady and Hopkins 87) for a precise statement of this). Sim-

iilarly, the disparity gradient between those points varies in-

versely with the difference in depth. Rogers has pointed out
that the second derivative of disparity (which, by analogy, is
called disparity curvature) of those points does not vary with
depth, which makes it a particularly attractive parameter on
which to base object recognition. In general, the computation
of disparity curvature is ill-conditioned. However, as disparity
curvature is related to surface curvature, it is best conditioned
at loci of two dimensional image change. The computation of
such points is also well suited to computation on SIMD proces-
sors. We are currently exploring the use of such points as seeds
for stereo.



3.3 The phantom edge finder

Figures 3 and 4 illustrate results with a new edge finding algo-
rithm, named the Phantom Edge Finder because of its resem-
blance to the (Watt and Morgan 87) MIRAGE algorithm for
one-dimensional boundaries. It also owes a considerable debt
to (Pearson and Robinson 85) for the “cartoon” representation
of intensity changes. The Phantom Edge Finder removes cam-
era noise while preserving fine texture and sharp corners. Its
output boundaries are thin, without “feathering” or multiple
responses. Results from different scales are combined into a
single edge map, and extraneous edges in staircase patterns are
removed during scale combination.

The Phantom Edge Finder is, in many ways, similar to ex-
isting edge finders. Its performance derives from a new view

Figure 3: Output of the Phantom Edge Finder on an image of a
computer console. Top left: original image. Top right: cartoon,
in which black cells are on the dark side of an edge, white cells
on the light side, and grey cells both or neither. Bottom left:
edge map. Bottom right: reconstructed intensities.

of the relationship between regions and boundaries that is dis-
cussed more fully in (Fleck 87). According to this view, regions
represent subsets of space while boundaries represent the topol-
ogy of space. In vision, regions are represented by sets of cells,
such as the receptors in a CCD camera. Boundaries are placed
between adjacent cells, that is, between cells sharing an edge or
a vertex. In the Phantom Edge Finder, most processing takes
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place at cells. Function values (e.g. intensity) and labels used
in computation are stored at cell locations. Boundaries are
only represented implicitly, by putting contrasting labels on
pairs of adjacent edge cells that are separated by boundaries.
In fact, the Phantom Edge Finder does not compute boundaries
directly, but identifies edge cells and deduces the boundary lo-
cations from them. Many edge finder computations are done
over all cells with significant second difference responses, which
form wide bands of cells near boundaries. These algorithms do
not fit neatly into the traditional distinction between region--
based and boundary-based algorithms.

The Phantom Edge Finder detects boundaries using second
differences, for three reasons:

1. The sign of a first difference depends on the direction
of motion along the corresponding one-dimensional path;
that of the second difference does not.

2. A first difference responds at the boundary itself. The
second difference, however, gives a high response near
boundaries. Since processing is done at cell locations and
boundaries are located between cells, this is the most use-
ful type of response.

3. Roof edges are signalled by peaks and valleys in the sec-
ond differences; they are not signalled explicitly in first
difference responses.
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The Phantom Edge Finder detects boundaries using direc-
tional second differences. For the rectangular arrays assumed
by the current program, second differences are taken in four di-
rections: horizontal, vertical, and two diagonal directions. The
operator used is [1,0, —2,0, 1]. To equalize the responses of step
edges and thin bars, the second difference response a — 2b + ¢
is normalized by ||maz(a — b,c — b)||/||(a — &) + (c — b)||. Be-
cause noise is suppressed later in the program, prior smoothing
with a Gaussian or related filter is not needed, and a small op-
erator can be used to preserve fine detail. The noise suppres-
sion relies on the fact that camera noise is added after optical
blurring. Noise is identified by the following criterion:

e A cell response due to a real edge has a star-convex neigh-
borhood of responses of the same sign, where the sum of
the responses over that neighborhood is high.

The Phantom Edge Finder avoids the problem of “feath-
ering” by combining responses from different directions before
extracting zero crossings. Specifically, it tries to classify each
cell with a significant second difference response as either on the
light side (“light”) or on the dark side (“dark”) of a boundary.
Cells with no significant response are unlabelled. It is, however,
possible for a cell to be on the light side of one boundary and
to be on the dark side of another. This happens when the in-
tensity surface has a saddle. Intensity saddles can be images of
a saddle on the imaged three-dimensional surface, or they may
be caused by smoothing a junction of three or more regions.
Such cells are labelled as both light and dark.

The classification of cells as dark or light is based on com-
puting the maximum-amplitude positive and negative responses
over all directional differences. For an isolated step edge, the
maximum amplitude response is in the direction closest to per-
pendicular to the boundary. If more than one boundary is in-
volved, the maximum-amplitude response(s) reflect differences

perpendicular to the boundaries with the largest intensity changes

Since a cell can be on both the light and dark sides of differ-
ent boundaries, separate positive and negative responses are
computed for each cell.

This method of combining directional responses has been
designed to give good performance on sharp corners and places
where several regions meet at a point. For example, Figure 5
illustrates the performance of the Phantom Edge Finder on the
tines of a fork. Most edge finders combine responses in ways
that are not good indicators of the boundary strengths involved
in such cases; examples include: the sum of the directional re-
sponses, other non-directional center-surround operators (Marr
and Hildreth 80), and the sum of the responses of the correct
sign. Such techniques tend to give overly high values to the
insides of sharp corners and overly low values to the outsides.
In theory (Berzins 84), the zero-crossing of the Laplacian of
a Gaussian is closed around a sharp corner but balloons out.
In practice, the weak outside response of this type of opera-
tor causes the zero-crossing to randomly merge into the back-
ground noise. The combination method used in the Phantom
Edge Finder does not require that the directional responses
conform to any particular pattern, e.g. have a unique maximal
response, peak responses in some directions, or responses that
can be modelled as a linear transformation. Previous work has
tended to depend on such assumptions (Canny 83) and (Har-
alick, Watson, and Laffey 83), although they break down at
sharp corners and boundary intersections. Canny’s edge finder,
for example, tends to leave small gaps at such points.

The maximum-amplitude positive and negative responses

Figure 4: Output of the Phantom Edge Finder on an image of
four textured patterns.

are then used to classify each cell as dark or light. Presence of
a non-noise response of one type is not sufficient grounds for
assigning that label to the cell, since cells near the Z€ero-crossing
in a step edge may have both negative and positive responses.
In such cases, one response is significantly larger than the other,
unless the cell is actually straddling the boundary. Only in

cases where the two responses are of similar strength does the
program assign both labels. When one response 1s more than

1.5 times the other response, Phantom Edge Finder gives the
cell only a label reflecting the larger response.

From the dark/light classification of cells, the algorithm
then extracts boundaries. A boundary is considered to exist
between a pair of cells when they have opposite dark/light la-
bels. These boundaries correspond to step edges. Thin bars,
even as thin as one cell wide, are found as a pair of step edges.
Because cells may not be labelled, or may be assigned both la-
bels, boundaries can end abruptly. Roof edges are determined
as regions of dark or light response that are not near dark/light
transitions. Currently, the algorithm does not detect roof edges
which are close to step edges robustly. Further detail, partic-
ularly on the combination of information from different scales
and the elimination of staircase phenomena, are described in
(Fleck 87).



The local geometry of images

The inadequacy of edge finders that are based on detecting large
differentials stems from the implicit assumption that edges are
loci of one-dimensional change. The simplest example of two--
dimensional image structure is provided by the ‘L’- junction or
gray-level corner, which corresponds to a corner of a polyhedral
surface in the real-world. Another important intensity struc-
ture is the “T’-junction, typically arising where three polyhedra
surfaces meet. Whereas it is possible to write down a mathe-
matical definition for an ‘L’-junction (Dreschler and Nagel 82),
a multitude of parameters are required for a ‘T’-junction. ‘T’-
junctions are relatively simple two-dimensional structures.

With the ultimate goal of defining a two-dimensional image
representation, we have investigated some of the differential ge-
ometric properties of the intensity image structure. We have
shown how the geometry of a simple facet model can charac-
terise idealised instances of features such as intensity junctions
and corners. The analysis given here and in (Noble 87) provides
the Phantom Edge Finder with a theoretical underpinning in
differential geometry.

(Haralick, Watson, and Laffey 83) proposed a eigenstruc-
ture representation for the Topographic Primal Sketch. Gra-
dients, first and second derivatives, and the Hessian were used
to derive ten pixel labels based on surface and edge proper-
ties. The calculations of principal curvatures (a crucial part
of the scheme) proved complex. Further, there is an inherent
ambiguity problem with the labelling scheme. An equivalent
surface description is provided by using the Gaussian (K) and
Mean (H) curvatures. Whereas the principal curvatures are
the eigenvalues of the Weingarten Map (defined as the matrix
G~1D where D is the Second Fundamental Form and G is the
First Fundamental Form), H and K correspond to the natural
algebraic invariants. However, H and K are scalar quanti-
ties. Thus a representation based on their characteristics re-
moves the need to consider directional quantities. Motivated
by this, and by the performance of Haralick’s Topographic Pri-
mal Sketch, we propose to use the characteristics of the Second
Fundamental Form.

The foundations of the scheme are derived from the image
surface description provided by the facet model (Haralick 80),
(Haralick 84). We approximate the image surface locally as a
linear combination of (the first eight) Chebychev polynomials,

to distribute noise evenly through the window. In practice,
we work with a (5 x 5) window; here we derive the simpler

Figure 5: An image of a fork with sharply pointed tines, cartoon
output, and edge map.
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case of a (3 x 3) window centered on the origin, and covering
(z,y) 1z =-1,0,1;y=-1,0,1.
The intensity function I(z,y) is approximated as:

8
I(x>y) = Z anPn(I;y)
n=0

where P; refers to the ith Chebychev polynomial:

Po(z,y) = 1 Pi(z,y) = =

Py(z,y) = ¥ Psy(z,y) = 22-2/3
Py(z,y) = =y Ps(z,y) = y?—2/3
Ps(z,y) = zPs(z,y) Py(z,y) = yPs(z,y)
Pg(:t, y) = P3(:C)y)P5(I7 y)

The coefficients ao, a1, .. .,as may be found using the or-

thogonality of the Chebychev polynomials:

an = Zz EyPn(x,y)I(z,y)
" i X5 Pi(i,g)
This implies that the fitting coefficients can be computed

as a linear combination of the data values in'I(z,y) with coef-
ficients

Y2 Xy Pa(z,9)
> Zj PZ(")J')
Solving for each of the parameters produces the following
nine convolution masks.

111 -1 01 1 -1 -1
1901 11 16| -1 0 1 16| 0 0

111 -1 01 | 11

a b c

1 -2 1 10 -1 [ 1 1
161 -2 1 1/4| 00 © 16| -2 -2 -2

1 -2 1 -1 0 1 | 1 1
e f
10 1 -1 2 -1 1 -2
14| 2 0 -2| 1/4] 0o o0 O 1/4| -2 4 -2
10 1 1 -2 1 | 1 -2
g h J

Each mask may be applied independently to the image data
to determine parameter estimates for all image pixels. In prin-
ciple, this implies that it is possible to express I(z,y) up to the
fourth degree. Now consider the differential geometry of the
image surface:

S(z,y) = zi+yj+ I(z,y)k
The First Fundamental Form is defined by the equation,
@, = dS.dS = Edz? + 2Fdzdy + Gdy*
Assuming a fourth order Chebychev model,

I(z,y) = a+bz+cy+d(z®—2/3)+exy+ f(y? —2/3)
+9z(y? — 2/3) + hy(z? — 2/3) + 5(a* — 2/3)(v* - 2/3)
the First Fundamental Form coefficients can be derived in
terms of the parameter estimates:

E = 1+1.1, = 1+(b-2/39)?
G = 1+1I,.I, = 1+(c—2/3h)*
F = L., = (b—2/3g)(c —2/3h)
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EG-F*=1+I2+1I} =1+ (b—-2/39)* + (c — 2/3h)?
Similarly, the Second Fundamental Form is given by,
®; = —dS.dN = Ldz* + 2Mdzdy + Ndy?

where N is the local surface normal. In terms of estimated
parameters:

M = I,

L = L./\i+B+12 = 2(d - 2/35) /VEG - F?
N = L,/ i+E+I2 = 2(f - 2/3j) /VEG - F?

1+ 2+ = e/VEG—F?

LN — M* = 4(d - 2/3)(f - 2/3j) - ¢ /(EG - F?)

The matrix of coefficients of the Second Fundamental Form
is denoted by D. The determinant of D can be used to pro-
vide a pixel label describing the local surface geometry. As is
well-known, a planar point is defined by L = M = N = 0, a

Figure 6:

Characterisation of idealised 2D image struc-
tures; 2D structures identified by the algorithm are high-

lighted on the original. (a) ‘Y’-junction, (b) ‘I’-junction,
(c) ‘X’-junction,(d) Corner.(e) shows the distribution of el-
liptics(black),hyperbolics(dark grey) and parabolics(light grey)
around the corner in (d).

parabolic point LN —M? = 0, a hyperbolic point LN-M? <0,
and an elliptic point LN — M? > 0.

For noise-free images, this geometric classification is com-
plete. ‘Interesting’ points are associated with neighbourhoods
containing strong evidence of two-dimensional intensity vari-
ation (elliptic and hyperbolic points). Results are presented
for running the algorithm on synthetic and real data. Figure
6 shows the characterisation of common idealised two-dimen-
sional image structures. Groups of localised two-dimensional
(elliptic and hyperbolic) labels correctly identify corners and
intersections. The two-dimensional structure identified by the
algorithm for an asymmetric chess board is shown in Figure 7a.
A Canny operator assumes that a discontinuity has the local
structure of a step. Figure 7b illustrates the result of applying

the Canny algorithm to the chess board image.

For real images a purely geometric model is inadequate.
Figure 8a, show the pixel classification for one image of a cup
from a motion sequence. Clusters of hyperbolic and elliptic
points appear around object corners and at ‘T’- junctions; an

observation consistent with Nagel’s gray-value corner defini-
tion, namely that a gray-value corner lies between the local

maxima of positive Gaussian curvature (elliptic point) and local
maxima of negative Gaussian curvature (hyperbolic). Prelim-
inary empirical investigations suggest that a suitable measure
(C) on which to base statistical noise analysis is

c=vEG— . mltlxl
’ 2

This measure is closely related to that proposed for the
Kitchen-Rosenfeld and Zuniga-Haralick corner detectors. Fig-
ure 8b shows the result of thresholding the Cup Image hyper-
bolic points at a 95 % confidence level on this measure.

Figure 7: Chess board: (a) 2D structure identified by the al-
gorithm (highlighted white), (b) a Canny operator fails to cor-
rectly mark the intersections.

A system that finds changes in colour

Colour provides additional constraint for intermediate vision
processes by enriching the descriptions attached to edges with
information that concerns properties of the imaged surface.

Colour information can be of considerable use in vision ap-
plications:

e Colour makes segmentation more reliable. The reader
might care to look for four impala ram and one lamb in
Figure 9. If you cannot, try looking at the colour version
of the picture. (Horn 86) has described how the grey level



Figure 8: Cup image: (a) Clusters of hyperbolic (black) and

elliptic (white) points appear around object corners and along

curved edges. Pixel classification of entire image after smooth-

ing with a Gaussian of o = 5, (b) Thresholding hyperbolics on

a measure of cornerness suppresses false labelling due to noise.
information at pixels depends both on the reflectance and
the orientation of a surface. However, the colour of a
pixel also depends as well on the shape of the surface re-
flectance function, which, by making assumptions about
the spatial variation of the spectral composition of the
illuminant, we are able to recover.

e Colour constrains matching. Consider matching edges
from a pair of edges, as is usually done in stereo, mo-
tion, and in computing shape representations such as
Smoothed Local Symmetries. Complex images often pose
considerable picket-fence problems. Matches may be dis-
ambiguated by recording the colour present on each side
of an edge in each image.

e Colour can aid visual monitoring of processes. For ex-
ample, the problem of visually monitoring the cooking of
meat is most reliably determined from its hue.

The most useful information is concentrated at changes, and
so we need to be able to find changes in colour.

To digitize scenes, we use a CCD camera and a number of
different gelatine filters. The following differences between our
camera setup and the human eye may be noticed:

® The chromatic aberration of a camera lens is so small (at
the frequencies of interest) that it can be neglected. As

a result, each colour channel has the same spatial resolu-
tion.

e There are as many kinds of receptors at each point as we
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care to put there, within the limitations of the physics of
available filters.

These differences are considerable, but the kernel of the
problem still remains: given a set of receptor responses, and
knowing the receptor sensitivities, recover the surface reflectance
function, up to a constant (we refer to this rather loosely as the
shape of the surface reflectance function.) It is clear that this
is not possible without additional constraints. Fundamental to
all computational work on computing the shape of surface re-
flectances is the assumption that illumination changes slowly
over space. This is equivalent to the assumption that a sharp
change in the colour signal is due to a sharp change in the
world of reflecting objects, rather than to a sharp change in
illumination.

For this reason, the following seems to be a reasonable ac-
count of early colour vision:

1. Compute the best approximation to the colour signal, and
find the colour changes.

2. From those changes, construct an estimate of the spatial
structure of the illuminant.

3. From this, construct a map of the surface reflectance func-
tions that are presumed to have caused the original colour
signal.

In our current work on finding colour changes, we avoid
the problem of colour constancy by assuming that the spectral
content of the illuminant varies slowly over space. Thus, all
perceivable spatial changes in colour in images of a given scene
are due to changes in the shape of the surface reflectance func-
tion. This assumption underlies all colour constancy work, but
it is not the same as assuming isochromatic illuminants from
scene to scene.

In related work, Nevatia constructed a colour edge detec-
tor by applying the Hiickel operator to the red, green and blue
filtered images with the intention of using the additional infor-
mation to improve the original edge map, but concluded that
most edge information was in the intensity image (Nevatia 77).
It turns out that this is essentially correct; but it is an unfor-
tunate conclusion: rather than being a source of new edges;
the available colour information is a source of rich descriptors
to attach to existing edges. (Machuca and Philips 83) pro-
posed a colour edge detector operating on the phase of the IQ
vector (effectively a representation of hue), but presented few
results. (Gershon 85) proposed a colour edge detector based
on the presence in the cortex of double opponent cells, but few
experimental results.

If we wish to use the spatial bandwidth of our system, the
option of inspecting the colour at either side of a brightness
change must be rejected. Cameras plus filters are able to spa-
tially localise isoluminant changes in colour, a task on which
humans perform poorly. We can exploit this ability. Since
we are attempting to find a property of surfaces from images
we need to detect changes in the shape of the colour signal,
and these are assumed to correspond to changes in the shape
of the spectral reflectances of the world. An opponent coding
of a colour signal determines the shape of the colour signal,
if we normalise it by the intensity of the two components in-
volved. For example, %{v, where B is the blue component of
the colour signal and Y is yellow, determines the relative size
of the “humps” at the long wavelength and short wavelength
ends of the spectral energy density. Similarly, %g;—g} deter-
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| (2)

: 4 (c
Figure 9: Impala Rams: there are four impala rams and
one lamb in this image. (a) shows the intensity image of the
impala. (b) shows the red component of the colour version
of this picture. (c) shows the green component of the colour
version, (d) shows the bluc component of this picture.

mines the finer scale shape at the long wavelength end of the
spectrum. It follows that the opponent cell responses represent
a sensible decomposition of the colour signal that the sensors
can reconstruct.

Recall that the only signal available to the system is the
projection of the colour signal onto three functions. We can
represent the colour signal as an infinite sum relative to any
given set of basis functions. For the first three basis functions,
we may choose any set of functions that span the space spanned
by the receptor sensitivity functions. Then, to reconstruct the
signal, we simply compute the coefficients of the receptor sen-
sitivity functions in the expansion: in essence, we are blind to
the rest of the signal, by construction. This is contrary to the
proposal of (Barlow 82), who analysed the response of the re-
ceptors to a Fourier decomposition of the spectrum presented.
There is a natural basis, namely an orthogonalisation of the
three receptor sensitivity functions.

Double opponent cells (see for example (Daw 72), (Ger-
shon 85) or (Livingstone and Hubel 84)) assume a particular
significance in this analysis. Consider the receptor sensitivity
functions in Figure 10. Notice that there is a clear separation
between the hump at the blue end of the spectrum, whereas the
receptors at the longwave end of the spectrum are rather close
together. Thus, a signal reconstructed as a linear combination
of these functions can qualitatively be described by considering
two questions:

1. (i)is the hump at the shortwave end of the signal larger or
smaller than the composite hump at the longwave end?

2. (ii)considering the finer scale structure of the longwave
end of the signal, which hump is larger?

The responses of opponent cells can be viewed as answer-
ing these questions. This suggests that colour edges may be
detected by applying a conventional edge detector to an oppo-

nent encoding of the image. In our implementation, the colour
edge finder works as follows:

The opponent signals are computed, and a pyramid of scaled
and resampled versions is constructed for the opponent signals,
the intensity signal, and the opponent intensity signals. For
those regions in the image where the opponent intensity signal
is below some threshold, the opponent signals are adjusted to
be in balance, as reliable information about the nature of the
colour signal and its changes is not available at such points.

The response regions for each opponent at each scale are
calculated. Notice that at this stage we do not use the nor-
malised opponent intensity signals since we wish to force the
edges in the opponent signals to line up with those in the in-
tensity signal. We have found that using the opponent signals
leads to an average error of less than a pixel (or rather, an occa-
sional error of a pixel, and no greater errors), whereas using the
normalised opponents leads to a larger error which is difficult
to deal with in a principled way. The response regions label
the image with areas where the opponents have swung one way
or the other. In this way, we can isolate the isoluminant colour
changes.

We construct zero crossing maps of the image, where the
zero crossings are labelled with (i) the colour in the original
image; and (ii) with the nature of the change in colour across

200
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Figure 10: Receptor sensitivity functions: The graph
shows human cone sensitivity functions plotted as log relative
sensitivity against wavelength. The graphs were simplified from
Bowmaker and Dartnall, 1980.




the zero crossing. Keeping the images in register is relatively
straightforward: the fact that the Phantom Edge Finder is so
accurate at localising changes, means that the response regions
coincide to within at most a single aberrant pixel. Locally, we
then require edges in the opponents either to be in register with
edges in the brightness image, or to be far from them.

This can easily be enforced. For each pixel marked by the
Phantom Edge Finder as being on the ‘light’ side of a zero
crossing, we inspect its neighbours that are marked similarly.
The neighbours of these pixels which are not marked as being on
either side of a zero crossing, are sorted by opponent response,
and the majority vote is accepted as a labelling for all pixels
visited. The same must be done for all pixels marked as being
on the ‘dark’ side of a zero crossing, mutatis mutandis. This
technique deals with registration errors in the response images
that are one pixel wide and this is the worst case in practice.

As noted in the previous subsection, phantom edges are zero
crossings generated from an image by inflexions in the image
surface. These occur when, for example, a red region is sepa-
rated from a green region by a white region: the white region is
then redder than the green region and greener than the red re-
gion. (Clark 86) has suggested that these may be rejected when
one marks zero crossings by considering the actual change over
the puported zero crossing: our colour change program is based
on an idea due to (Fleck 87), which works by considering the
way these zero crossings tend to arise when one combines a
map of responses obtained at a coarse scale with a set obtained
at a finer scale. A version of Clark’s technique is also used, as
these spurious edges, although not terribly common in inten-
sity images, are for some reason a real problem in opponent
encoded images. Opponent zero-crossings are subjected to this
technique as well.

Figure 11: ColorChecker Edges: (a) shows the zero crossings
of the R-G opponent. (b) shows the zero crossings of the B-Y
opponent. The red (blue, resp.) sides of edges are marked
white, the green (yellow, resp.) black.
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We show results in Figures 11 and 12; the images are pre-
sented as a set of three component images, and the response
regions and zero crossing maps are shown for a number of ex-
amples.

Figure 12: ColorChecker Edges: (a) shows the response re-
gions of the R-G opponent. (b) shows the response regions of
the B-Y opponent. The red (blue, resp.) responses are marked
white, the green (yellow, resp.) black.

The Disputer: a dual-paradigm parallel pro-
cessor for graphics and vision

The Disputer is a parallel processor which is a closely cou-
pled arrangement of a 256-processor SIMD machine and a 42-
processor MIMD machine. Algorithms at the “back-end” of the
graphics pipeline and at the “front-end” of machine vision ap-
plications, are often characterised by local-support operations
on large arrays of pixels. The data-parallelism of early vision
and late graphics computations are well suited to SIMD pro-
cessing. Later vision, earlier graphics, and many robot control
tasks typically exhibit task parallelism that is better matched
to the MIMD model of computation. The Disputer is the com-
bination of: a SIMD array processor called DisArray; a MIMD
network of Inmos Transputers; and controller hardware which
has been designed to link them together. The two parallel ma-
chines are closely coupled and the SIMD machine has a real-
time video output channel. The entire system is programmed
in Occam 2. This machine is now allowing us to investigate
dual-paradigm algorithms very effectively.

Earlier work on a SIMD machine for graphics applications
(Page 83) resulted in a system called DisArray (Display Array)
that significantly reduced one of the major bottlenecks of real-
time graphics: rendering the image into a frame buffer. The ini-
tial motivation for building DisArray was to execute RasterOp
(BitBlt), an important operation in bitmap-based graphics, in
parallel at very high speed. Though it was primarily intended
for exploring parallel algorithms for graphics applications, Dis-
Array is a general purpose SIMD machine that is similar to
the AMT (previously ICL) Distributed Array Processor (S.F.
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73). Because it is a general purpose SIMD processor, DisArray
has proved an effective base for developing a broader class of
algorithms than originally envisaged. Parallel algorithms have
been developed for many vision and graphics problems, such as
pelygon rendering.

DisArrayis an array of 256 single processing elements (PEs)
in a 16 X 16 arrangement with four nearest-neighbour communi-
cations. Row-based and column-based broadcast lines transmit
data, addressing, and control information to the PEs. In addi-
tion, a video shift register is threaded through the PEs, which
supports real-time display of a 512 X 512, 16-colour bitmap
from some part of the array memory. A proposed re-design of
the video board will upgrade the screen resolution and allow
real-time video input as well. Each PE has 256k by 1-bit mem-
ory, implemented by a single dynamic RAM. All processors in
the array execute the same, globally broadcast, instruction at
the same time. The array has a low-level scheduler which ar-
bitrates between requests for such computational cycles and
video refresh cycles.

A sequential controller (a Transputer) generates the instruc-
tions for the SIMD array. Having given a single instruction to
the array, the controller and array operations then proceed in
parallel. The array instructions are generally of the form :

Mem [addr] =T (Mem [addr], Register, RowData AND
ColumnData)

where F is an arbitrary Boolean function and the operation
takes place between two 256-bit square words. The instruc-
tion register for the array, together with various address and
data registers for communication are mapped into the address
space of the controller. The controller itself is a 20MHz, 32-bit,
1Mbyte RISC machine, based on the T414 transputer.

The MIMD array is a six-by-seven array of Transputers,
each of which is a 20MHz T414 with no external support chips.
The memory for each Transputer is limited to the 2kbytes of
on-chip, 50nS static RAM. The nearest-neighbour connections
in the array are hard-wired and the 26 edge connections are
brought out to a patch panel. The edge connections are also
used to communicate with the DisArray controller and with the
Transputer development system. We have recently augmented
the MIMD processor network with a further 40 Transputers
each with 256kb of external RAM.

_ There is a 16-bit DMA link between the DisArray controller
and a Unix host processor. A running application on the Dis-
puter can arbitrarily access the Unix memory. This link is often
used to locate and continuously refresh the screen picture from

a display file, or other applications-oriented data structure, in"

the address space of some Unix process. We also use the DMA
link to get image data into the Disputer from a Datacube frame
grabber/processor which is acessible from the Unix host over
an Ethernet. ,

At present, all of the software for the Disputer is in Occam
2 and the software development is carried out on a 2Mbyte
T414 transputer with an IBM PC/AT acting as terminal and
filestore. The complete SIMD/MIMD application can be ex-
pressed as a single Occam program, even though it might con-
sist of many hundreds of processes. The development system
(transputer and/or IBM PC) can also act as a host to the Dis-
puter system, in which case communication is by up to 4 trans-
puter links rather than the DMA link.

Currently, we have a simple low level vision system working
on the SIMD hardware and we will soon extend this to incorpo-

rate Fleck’s Phantom Edge Finder described earlier. We then
intend to develop some simple intermediate-level vision algo-
rithms running on the MIMD engine performing, for instance,
parallel matching against a database of models. It has become
increasingly clear that there is a great deal of computational
commonality between graphics algorithms and those being de-
veloped by the machine vision community, most obviously in
the data-parallel algorithms. This is perhaps not too surpris-
ing, as graphics and vision are two sides of the same coin, whose
currency is computational geometry. Indeed we now feel that,
the degree of commonality is such that it warrants the devel-
opment of a virtual machine for graphics and vision and we
are actively working on its definition. This will provide an in-
terface between applications programs and the highly parallel
hardware which implements the kernel algorithms of the ap-
plication. It is the intention that the virtual machine is not
heavily orientated towards any particular hardware model, but
should be implementable in a number of different ways.

Geometric reasoning

Geometric reasoning will play a key role within the AGV project.
The main geometric reasoning system will perform three major
functions:

e Planning collision-free paths for the vehicle, including ad-
justing the plan to avoid unexpected obstacles (detour-

ing);

o Planning pallet acquisition, using a fork-lift attachment
to the vehicle;

o Providing geometric modelling support for the sensor sys-
tems, including visibility information.

The last of these functions affects mainly the organisation of the
geometric data bases, and will not be discussed in detail here.
Providing the first two functions involves the use of a num-
ber of techniques/algorithms from different branches of A.L
and robotics, notably different forms of path-planning, path-
checking, and search techniques. ‘Although our short-term goal
is to provide the three major functions listed above, we are also
interested in building a computational framework that will sup-
port other geometric reasoning tasks and queries, for example
the cleaning application; thus we are putting some effort into
the organisation of the geometric reasoning system.

The World Model
The world model is a central database that defines what the
AGYV believes its surroundings to be. The central role of the

world model is illustrated by the system architecture, shown
in figure 13. (This diagram is, of course, only a first approx-

_imation to the truth!) In this architecture the primary flow

of information is from top to bottom, as’information from the
different sensors is combined, sifted, pruned, and “interesting”
features lodged in the world model. In fact, to avoid the AGV
sitting and thinking about its surroundings for long periods
of time it is necessary for predictive information to flow from
the world model to the sensors, and so there is a secondary
flow of information to be catered for.- One important feature
of this architecture is that the planning system believes the
world model to be accurate; in particular, there is no direct
link between the planner and the sensors. Such an approach
is not normally recommended in most robotic systems as un-
certainty abounds. However we believe that such an approach
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Figure 13: Overall System Architecture

can be tolerated, at least for the work described herein, for
three reasons. Firstly, the environment of the vehicle is rea-
sonably friendly; it is not liable to be attacked, and reaction
time is not critical. Secondly, the vehicle itself is a relatively
inaccurate machine (by normal robotic standards) operating in
a fairly coarse environment: there should be little need for the
precise, guarded motions of the type required, say, in robotic
assembly work. Thirdly, the reliability of the system is not
critical; if the vehicle does occasionally fail to find a way of
performing its task it can sit and bleep to itself, awaiting hu-
man interaction. We see the world model itself as consisting of
four components, accessed through a kernel (figure 14). Two
of the components are essentially static, namely the Factory
Layout Model and the 3D Solid Models. The factory model
“looks” like a two-dimensional plan of the factory, on which
are marked static items (e.g., machining centres, pillars, door-
ways), quasi-static items (e.g., waste bins, doors), and nominal
roadways.  The 3D models are three-dimensional representa-
tions of objects that the vehicle senses or (literally) comes into
contact with, for which a simplified two-dimensional projection
will not suffice. (If there are many instances in the factory of,
say, parts bins, only a single instance is stored in this compo-
nent.) The other components of the world model will change,
both due to the discovery of unexpected objects and due to the
movement of the vehicle itself. One component is the feature
cache—it will store features that are useful for sensing. For
example, once a convenient landmark has been identified in a
view and its position computed the prominent features can be
stored in the cache, as being potentially useful and probably
(but not necessarily) invariant. (Of course, such a cache needs
a regime for disposing of information that has outlived its use-
fulness.) The route-planning component has a similar function
to the feature cache, namely to save information that was ex-
pensive to produce and that could be useful. In this case, the
information will consist of local detours around obstacles that
can be reused (providing the obstacle does not.move). Local C-
space maps, which are generated during the obstacle avoidance
phases, may also be cached.

Obstacle Avoidance

The fact that the environment of the AGV is reasonably well-
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Figure 14: World Mod¢l Components
structured means that we can take advantage of very simple
path planning algorithms; in particular, much of the time the
AGYV can use generate-and-test, whereby a path is proposed
and then checked for validity. In turn, proposing paths for the
AGYV is normally quite simple, as unless there are reasons to
do otherwise the vehicle can just uses the factory roadways.
The only real problem occurs when an unexpected obstacle is
encountered, when we expect one of three strategies to be used:

Figure 15: Two robots almost interfering

o If the obstacle is small we will use a potential-field ap-
proach to attempt to define a detour motion around it
{Khatib 85); this motion is verified by the path-checker
before being accepted.

e If the obstacle is larger the system will use a C-space ap-
proach, using a number of two-dimensional C-space maps
covering a small number of vehicle orientations (Lozano-
Pérez 83; Lozano-Pérez 85).

o If the route is blocked the vehicle will try to backtrack to
find another route.

To perform collision detection we will use the routines already
built into the ROBMOD system (Cameron 85; Cameron 84).
These routines have been optimised to perform intersection
tests using S-bounds, which is a simple method to reason about
the bounding volumes. (Cameron 87). Asan example, figure 15
shows two robots that almost interfere. The S-bounds system
generates an initial set of spatial bounds for the various parts
of the model; and then refines this set to reduce the volume
that needs to be searched for interferences (figure 16).
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Figure 16: S-bounds in action. The initial spatial bounds
for the two robots (left) are reduced to a single, small bound
(right).

Object Acquisition

The purpose of the object acquisition experiment is to introduce
the AGV into a space into which a number of loaded pallets
have been positioned in an irregular manner. The AGV will
have a fork-lift attachment, and has to identify the pallets,
compute their orientations, and plan how the acquire the pallets
using the fork-lift. In doing so it must take into account the
positions of other objects and pallets in the area in order to
avoid collisions. The path planning required in this case is thus
of a different calibre from that required for obstacle avoidance,
as it is necessary for the forks of the vehicle to come into close
proximity with other objects. However, the class of objects that
has to be tackled is restricted—namely, in the first instance, to
pallets. Thus our approach is to use simple skeletonised plans to
propose paths for the vehicle, which are then tested for validity.
This will clearly work in simple cases; the challenge will come

in getting the system to work well in relatively cluttered cases.

Three Dimensional Modelling

To test the system we will require realistic, three-dimensional
models of the AGV and its environment. Such support will
be provided by the ROBMOD modelling system (Cameron and
Aylett 87). Developed at Edinburgh University ROBMOD is
a Constructive Solid Geometry based system (Requicha and
Voelcker 82), which can also produce boundary information
and visibility maps for vision work. Figure 17 shows a ROB-
MOD model of our laboratory. Figure 18 shows another view of
the laboratory, but this time from within the room. ROBMOD
also provides support for many of the basic geometric functions
required by the geometric reasoning system, such as collision
detection, and distance computations.

Figure 17: Our AGV Laboratory

Sensor integration

The AGV described will operate in an unknown, but relatively
structured environment. A number of different sensors will be
used to provide the robot with navigation and part acquisition
information. To make effective use of the observations provided
by these sensors, it is important that we develop techniques to
integrate the available information. :

-

Figure 18: Interior View of the AGV Laboratory

We recall that the AGV will be equipped with stereo-vision,
a sonar array, a laser scanner, and proximity switches. These
sensors will be used to locate and navigate the robot, provide
environment information for path planning, and obtain object
information for the acquisition stage. In each of these tasks,
different sensors will provide different information, which must
be combined to provide a full and complete description of the
task domain. The observations made by the different sensors
will always be uncertain, usually partial, occasionally spurious
or incorrect and often geographically or geometrically incom-
parable with other sensor views. It is the goal of the integra-
tion processes to combine inbformation from all these different
sources into a robust and consistent description of the environ-
ment . .
-We will consider the environment in terms of geometry and
describe all locations and features in terms of parameterized
functions. To operate efficiently, the robot system must be
able to represent, account for, and reason with the effects of
uncertainty in these geometries in a consistent manner. We will
describe uncertainty in the environment in terms of a proba-
bility distribution defined on the parameter vectors of feature
description functions. A description of the environment will
be developed in terms of a network of uncertain geometric fea-
tures. Techniques for manipulating, transforming and combin-
ing these stochastic geometric descriptions have been developed
(Durrant-Whyte 87c), and will be used as a basis for integrating
sensor information. : ’

A general model of sensor characteristics will be used to
describe the dependence of sensor observations on the state of
the environment, the state of the sensor itself, and other sensor
observations or decisions. This sensor model describes a sensor
in terms of it’s ability to extract uncertain geometric descrip-
tions of the environment (Durrant-Whyte 87b). A constrained
Bayesian decision procedure will be used to cluster and inte-
grate sparse, partial, uncertain observations from these diverse

. sensor systems (Durrant-Whyte 87a).
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