
Finding Naked PeopleMargaret M. Fleck1, David A. Forsyth2, and Chris Bregler21 Department of Computer Science, University of Iowa, Iowa City, IA 522422 Computer Science Division, U.C. Berkeley, Berkeley, CA 94720Abstract. This paper demonstrates a content-based retrieval strategythat can tell whether there are naked people present in an image. Nomanual intervention is required. The approach combines color and tex-ture properties to obtain an e�ective mask for skin regions. The skinmask is shown to be e�ective for a wide range of shades and colors ofskin. These skin regions are then fed to a specialized grouper, which at-tempts to group a human �gure using geometric constraints on humanstructure. This approach introduces a new view of object recognition,where an object model is an organized collection of grouping hints ob-tained from a combination of constraints on geometric properties suchas the structure of individual parts, and the relationships between parts,and constraints on color and texture. The system is demonstrated tohave 60% precision and 52% recall on a test set of 138 uncontrolledimages of naked people, mostly obtained from the internet, and 1401assorted control images, drawn from a wide collection of sources. Key-words: Content-based Retrieval, Object Recognition, Computer Vision,Erotica/Pornography, Internet, Color1 IntroductionThe recent explosion in internet usage and multi-media computing has cre-ated a substantial demand for algorithms that perform content-based retrieval|selecting images from a large database based on what they depict. Identifyingimages depicting naked or scantily-dressed people is a natural content-based re-trieval problem. These images frequently lack textual labels adequate to identifytheir content but can be e�ectively detected using simple visual cues (color,texture, simple shape features), of the type that the human visual system isknown to use for fast (preattentive) triage [19]. There is little previous work on�nding people in static images, though [9] shows that a stick-�gure group canyield pose in 3D up to limited ambiguities; the work on motion sequences is wellsummarised in [4].Several systems have recently been developed for retrieving images from largedatabases. The best-known such system is QBIC [15], which allows an opera-tor to specify various properties of a desired image. The system then displays aselection of potential matches to those criteria, sorted by a score of the appropri-ateness of the match. Searches employ an underlying abstraction of an image asa collection of colored, textured regions, which were manually segmented in ad-vance, a signi�cant disadvantage. Photobook [17] largely shares QBIC's model of



an image as a collage of at, homogenous frontally presented regions, but incor-porates more sophisticated representations of texture and a degree of automaticsegmentation. A version of Photobook ([17], p. 10) incorporates a simple notionof objects, using plane matching by an energy minimisation strategy. However,the approach does not adequately address the range of variation in object shapeand appears to require manually segmented images for all but trivial cases. Ap-pearance based matching is also used in [8], which describes a system that formsa wavelet based decomposition of an image and matches based on the coarse-scaleappearance. Similarly, Chabot [16] uses a combination of visual appearance andtext-based cues to retrieve images, but depends strongly on text cues to identifyobjects. However, appearance is not a satisfactory notion of content, as it is onlyloosely correlated with object identity.Current object recognition systems represent models either as a collection ofgeometric measurements or as a collection of images of an object. This informa-tion is then compared with image information to obtain a match. Most currentsystems that use geometric models use invariants of an imaging transformationto index models in a model library, thereby producing a selection of recognitionhypotheses. These hypotheses are combined as appropriate, and the result isback-projected into the image, and veri�ed by inspecting relationships betweenthe back-projected outline and image edges. An extensive bibliography of thisapproach appears in [12].Systems that recognize an object by matching a view to a collection of imagesof an object proceed in one of two ways. In the �rst approach, correspondencebetween image points and points on the model of some object is assumed knownand an estimate of the appearance in the image of that object is constructedfrom correspondences. The hypothesis that the object is present is then veri�edusing the estimate of appearance [20]. An alternative approach computes a fea-ture vector from a compressed version of the image and uses a minimum distanceclassi�er to match this feature vector to feature vectors computed from imagesof objects in a range of positions under various lighting conditions [13]. Neitherclass of system copes well with models that have large numbers of internal de-grees of freedom, nor do they incorporate appropriate theories of parts. Currentpart-based recognition systems are strongly oriented to recovering cross-sectionalinformation, and do not treat the case where there are many parts with few orno individual distinguishing features[22].Typical images of naked people found on the internet: have uncontrolledbackgrounds; may depict multiple �gures; often contain partial �gures; are staticimages; and have been taken from a wide variety of camera angles, e.g. the �guremay be oriented sideways or may viewed from above.2 A new approachOur system for detecting naked people illustrates a general approach to objectrecognition. The algorithm:{ �rst locates images containing large areas of skin-colored region;



{ then, within these areas, �nds elongated regions and groups them into pos-sible human limbs and connected groups of limbs, using specialised grouperswhich incorporate substantial amounts of information about object struc-ture.Images containing su�ciently large skin-colored groups of possible limbs arereported as potentially containing naked people.2.1 Finding SkinThe appearance of skin is tightly constrained. The color of a human's skin is cre-ated by a combination of blood (red) and melanin (yellow, brown) [18]. There-fore, human skin has a restricted range of hues. Skin is somewhat saturated,but not deeply saturated. Because more deeply colored skin is created by addingmelanin, the range of possible hues shifts toward yellow as saturation increases.Finally, skin has little texture; extremely hairy subjects are rare. Ignoring re-gions with high-amplitude variation in intensity values allows the skin �lter toeliminate more control images.The skin �lter starts by subtracting the zero-response of the camera system,estimated as the smallest value in any of the three colour planes omitting loca-tions within 10 pixels of the image edges, to avoid potentially signi�cant desatu-ration. The input R, G, and B values are transformed into a log-opponent repre-sentation (cf e.g. [6]). If we let L represent the log transformation, the three log-opponent values are I = L(G), Rg = L(R)�L(G), and By = L(B)� L(G)+L(R)2 .The green channel is used to represent intensity because the red and blue chan-nels from some cameras have poor spatial resolution.Next, smoothed texture and color planes are extracted. The Rg and By arraysare smoothed with a median �lter. To compute texture amplitude, the intensityimage is smoothed with a median �lter, and the result subtracted from theoriginal image. The absolute values of these di�erences are run through a secondmedian �lter. 3The texture amplitude and the smoothed Rg and By values are then passedto a tightly-tuned skin �lter. It marks as probably skin all pixels whose textureamplitude is small, and whose hue and saturation values are appropriate. Therange of hues considered to be appropriate changes with the saturation, as de-scribed above. This is very important for good performance. When the samerange of hues is used for all saturations, signi�cantly more non-skin regions areaccepted.Because skin reectance has a substantial specular component, some skinareas are desaturated or even white. Under some illuminants, these areas appearas blueish or greenish o�-white. These areas will not pass the tightly-tuned skin�lter, creating holes (sometimes large) in skin regions, which may confuse geo-metrical analysis. Therefore, output of the initial skin �lter is re�ned to includeadjacent regions with almost appropriate properties.Speci�cally, the region marked as skin is enlarged to include pixels many ofwhose neighbors passed the initial �lter. If the marked regions cover at least 30%3 All operations use a fast multi-ring approximation to the median �lter [5].



of the image area, the image will be referred for geometric processing. Finally,to trim extraneous pixels, the algorithm unmarks any pixels which do not passa more lenient version of the skin �lter, which imposes no constraints on textureamplitude and uses less exacting constraints on hue and saturation.3 Grouping PeopleThe human �gure can be viewed as an assembly of nearly cylindrical parts, whereboth the individual geometry of the parts and the relationships between partsare constrained by the geometry of the skeleton. These constraints on the 3Dparts induce grouping constraints on the corresponding 2D image regions. Theseinduced constraints provide an appropriate and e�ective model for recognizinghuman �gures.
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LimbsFig. 1. Left: grouping rules (arrows) specify how to assemble simple groups (e.g. bodysegments) into complex groups (e.g. limb-segment girdles). These rules incorporateconstraints on the relative positions of 2D features, induced by constraints on 3D bodyparts. Dashed lines indicate grouping rules that are not yet implemented. Middle: thegrouper rejects this assembly of thighs and a spine (the dashed line represents thepelvis) because the thighs would occlude the trunk if a human were in this posture,making the trunk's symmetry impossible to detect. Right: this hip girdle will also berejected. Limitations on hip joints prevent human legs from assuming positions whichcould project to such a con�guration.The current system models a human as a set of rules describing how toassemble possible girdles and spine-thigh groups (Figure 1). The input to thegeometric grouping algorithm is a set of images, in which the skin �lter hasmarked areas identi�ed as human skin. She�eld's version of Canny's [3] edgedetector, with relatively high smoothing and contrast thresholds, is applied tothese skin areas to obtain a set of connected edge curves. Pairs of edge points witha near-parallel local symmetry [1] are found by a straightforward algorithm. Setsof points forming regions with roughly straight axes (\ribbons" [2]) are foundusing an algorithm based on the Hough transformation.Grouping proceeds by �rst identifying potential segment outlines, where asegment outline is a ribbon with a straight axis and relatively small variation inaverage width. Ribbons that may form parts of the same segment are merged,and suitable pairs of segments are joined to form limbs. An a�ne imaging modelis satisfactory here, so the upper bound on the aspect ratio of 3D limb segments



induces an upper bound on the aspect ratio of 2D image segments correspondingto limbs. Similarly, we can derive constraints on the relative widths of the 2Dsegments.
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Fig. 2. Grouping a spine and two thighs: Top left the segment axes that will be groupedinto a spine-thigh group, overlaid on the edges, showing the upper bounds on segmentlength and the their associated symmetries; Top right the spine and thigh groupassembled from these segments, overlaid on the image.Speci�cally, two ribbons can only form part of the same segment if they havesimilar widths and axes. Two segments may form a limb if: their search intervalsintersect; there is skin in the interior of both ribbons; their average widths aresimilar; and in joining their axes, not too many edges must be crossed. Thereis no angular constraint on axes in grouping limbs. The output of this stagecontains many groups that do not form parts of human-like shapes: they areunlikely to survive as grouping proceeds to higher levels.The limbs and segments are then assembled into putative girdles. There aregrouping procedures for two classes of girdle; one formed by two limbs, and oneformed by one limb and a segment. The latter case is important when one limbsegment is hidden by occlusion or by cropping. The constraints associated withthese girdles are derived from the case of the hip girdle, and use the same formof interval-based reasoning as used for assembling limbs.Limb-limb girdles must pass three tests. The two limbs must have similarwidths. There must be a line segment (the pelvis) between their ends, whoseposition is bounded at one end by the upper bound on aspect ratio, and at theother by the symmetries forming the limb and whose length is similar to twice theaverage width of the limbs. Finally, occlusion constraints rule out certain typesof con�gurations : limbs in a girdle may not cross each other, they may not crossother segments or limbs, and there is a forbidden con�guration of kneecaps (see�gure 1). A limb-segment girdle is formed using similar constraints, but using alimb and a segment.Spine-thigh groups are formed from two segments serving as upper thighs,and a third, which serves as a trunk. The thigh segments must have similaraverage widths, and it must be possible to construct a line segment betweentheir ends to represent a pelvis in the manner described above. The trunk seg-



ment must have an average width similar to twice the average widths of thethigh segments. Finally, the whole con�guration of trunk and thighs must sat-isfy geometric constraints depicted in �gure 1. The grouper asserts that human�gures are present if it can assemble either a spine-thigh group or a girdle group.Figure 2 illustrates the process of assembling a spine-thigh group.4 Experimental ResultsThe performance of the system was tested using 138 target images of nakedpeople and 1401 assorted control images, containing some images of people butnone of naked people. Most images were taken with (nominal) 8 bits/pixel ineach color channel. The target images were collected from the internet and byscanning or re-photographing images from books and magazines. They show avery wide range of postures. Some depict several people, sometimes intertwined.Some depict only small parts of the bodies of one or more people. Most of thepeople in the images are Caucasians; a small number are Blacks or Asians.Five types of control image were used{ 1241 images sampled4 from an image database produced by California De-partment of Water Resources (DWR), including landscapes, pictures of an-imals, and pictures of industrial sites,{ 58 images of clothed people, a mixture of Caucasians, Blacks, Asians, andIndians, largely showing their faces, 3 re-photographed from a book and therest photographed from live models at the University of Iowa,{ 44 assorted images from a CD included with an issue of MacFormat [11],{ 11 assorted personal photos, re-photographed with our CCD camera, and{ 47 pictures of objects and textures taken in our laboratory for other purposes.The DWR images are 128 by 192 pixels. The images from other sources werereduced to approximately the same size. Table 1 summarizes the performance ofeach stage of the system.Mistakes by the skin �lter occur for several reasons. In some test images, thenaked people are very small. In others, most or all of the skin area is desaturated,so that it fails the �rst-stage skin �lter. Some control images pass the skin �lterbecause they contain people, particularly several close-up portrait shots. Othercontrol images contain material whose color closely resembles that of humanskin: particularly wood and the skin or fur of certain animals. All but 8 of our 58control images of faces and clothed people failed the skin �lter primarily becausemany of the faces occupy only a small percentage of the image area. In 18 ofthese images, the face was accurately marked as skin. In 12 more, a substantialportion of the face was marked, suggesting that the approach provides a usefulpre-�lter for programs that mark faces. Failure on the remaining images is largelydue to the small size of the faces, desaturation of skin color, and fragmentationof the face when eye and mouth areas are rejected by the skin �lter.4 The sample consists of every tenth image; in the full database, images with similarnumbers tend to have similar content.



Figures 3-4 illustrate its performance on the test images. Con�gurationsmarked by the spine-thigh detector are typically spines. The girdle detectoroften marks structures which are parts of the human body, but not hip or shoul-der girdles. This presents no major problem, as the program is trying to detectthe presence of humans, rather than analyze their pose in detail.False negatives occur for several reasons. Some close-up or poorly croppedimages do not contain arms and legs, vital to the current geometrical analysisalgorithm. Regions may have been poorly extracted by the skin �lter, due todesaturation. The edge �nder may fail due to poor contrast between limbs andtheir surroundings. Structural complexity in the image, often caused by stronglycolored items of clothing, confuses the grouper. Finally, since the grouper usesonly segments that come from bottom up mechanisms and does not predict thepresence of segments which might have been missed by occlusion, performanceis notably poor for side views of �gures with arms hanging down. Figures 5-6 show typical performance on control images. The current implementation isfrequently confused by groups of parallel edges, as in industrial scenes, andsometimes accepts ribbons lying largely outside the skin regions. We believe thelatter problem can easily be corrected.

Fig. 3. Typical images correctly classi�ed as containing naked people. The output ofthe skin �lter is shown, with spines overlaid in red, limb-limb girdles overlaid in blue,and limb-segment girdles overlaid in blue.eliminated by eliminated by marked as containingskin �lter geometrical analysis naked peopletest images 13.8% (19) 34.1% (47) 52.2% (72)control images 92.6% (1297) 4.0% (56) 3.4% (48)Table 1. Overall classi�cation performance of the system.



Fig. 4. Typical false negatives: the skin �lter marked signi�cant areas of skin, butthe geometrical analysis could not �nd a girdle or a spine. Failure is often caused byabsence of limbs, low contrast, or con�gurations not included in the geometrical model(notably side views).
Fig. 5. A collection of typical control images which were correctly classi�ed as controlimages by our system. All contain at least 30% skin pixels, and so would be classi�edas containing naked people if the skin �lter were used alone.5 Discussion and ConclusionsFrom an extremely diverse set of test images, this system correctly identi�es52.2% as containing naked people. On an equally diverse and quite large set ofcontrol images, it returns only 3.4% of the images. In the terminology of content-based retrieval, the system is displaying 52% recall and 60% precision against alarge control set5. Both skin �ltering and geometric processing are required for5 Recall is the percentage of test images actually recovered;precision is the percentageof recovered material that is desired.
Fig. 6. Typical control images wrongly classi�ed as containing naked people. Theseimages contain people or skin-colored material (animal skin, wood, bread, o�-whitewalls) and structures which the geometric grouper mistakes for spines or girdles. Thegrouper is frequently confused by groups of parallel edges, as in the industrial image.



this level of performance: the skin �lter by itself has better recall (86.2%), butreturns twice as many false positives. This is an extremely impressive result fora high-level query (\�nd naked people") on a very large (1539 image) databasewith no manual intervention and almost no control over the content of the testand control images.This system demonstrates detection of jointed objects of highly variableshape, in a diverse range of poses, seen from many di�erent camera positions. Italso demonstrates that color cues can be very e�ective in recognizing objects thatwhose color is not heavily saturated and whose surfaces display signi�cant spec-ular e�ects, under diverse lighting conditions, without relying on preprocessingto remove specularities. While the current implementation uses only very simplegeometrical grouping rules, covering only poses with visible limbs, the perfor-mance of this stage could easily be improved. In particular: the ribbon detectorshould be made more robust; detectors should be added for non-ribbon features(for example, faces); grouping rules for structures other than spines and girdlesshould be added; grouping rules should be added for close-up views of the humanbody.The reason we have achieved such good performance, and expect even betterperformance in the future, is that we use object models quite di�erent from thosecommonly used in computer vision (though similar to proposals in [2, 14]). In thenew system, an object is modelled as a loosely coordinated collection of detectionand grouping rules. The object is recognized if a suitable group can be built.These grouping rules incorporate both surface properties (color and texture) andsimple shape information. In the present system, the integration of di�erent cuesis simple (though e�ective), but a more sophisticated recognizer would integratethem more closely. This type of model gracefully handles objects whose precisegeometry is extremely variable, where the identi�cation of the object dependsheavily on non-geometrical cues (e.g. color) and on the interrelationships betweenparts. While our present model is hand-crafted and is by no means complete,there is good reason to believe that an algorithm could construct a model of thisform, automatically or semi-automatically, from a 3D object model.Finally, as this paper goes to press, a second experimental run using a sub-stantially improved version of the grouper has displayed 44 % recall and anextraordinary 74 % precision on a set of 355 test images and 2782 control im-ages from extremely diverse sources.Acknowledgements: We thank Joe Mundy for suggesting that the response ofa grouper may indicate the presence of an object and Jitendra Malik for helpfulsuggestions. This research was supported by the National Science Foundation undergrants IRI-9209728, IRI-9420716, IRI-9501493, under a National Science FoundationYoung Investigator award, an NSF Digital Library award IRI-9411334, and under CDA-9121985, an instrumentation award.References1. Brady, J. Michael and Haruo Asada (1984) \Smoothed Local Symmetries and TheirImplementation," Int. J. Robotics Res. 3/3, 36{61.
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