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Some Defects in Finite-Difference Edge Finders

Margaret M. Fleck

Abstract— This paper illustrates and explains various artifacts
in the output of five finite difference edge finders (those of Canny,
Boie and Cox, and three variations on that of Marr Hildreth)
reimplemented with a common output format and method of
noise suppression. These artifacts include gaps in boundaries,
spurious boundaries, and deformation of region shape.

Index Terms—Boie-Cox edge finder, boundary representation,
Canny edge finder, edge finder artifacts, edge finding, edge
tracking, Marr-Hildreth edge finder.

1. INTRODUCTION

ANY RECENT edge finders are based on finite differ-
ences of image intensities or derivatives implemented
using finite differences. They differ in the orders of the differ-
ences used, as well as in the method of combining differences
from different directions. Although numerous legends circulate
about the relative merits of different algorithms, there have
been few controlled studies. This paper illustrates and explains
some differences in performance that are visible in nearest-
pixel boundary representations, including artifacts such as
gaps in boundaries, spurious boundaries, and large distortions
of shape. Such differences will be of interest to researchers
developing new edge finders, trying to choose among existing
algorithms, or looking for problems to analyze theoretically.
Five algorithms will be examined. The Canny algorithm
reports boundaries at peaks of the first difference in the
gradient direction. The Boie-Cox algorithm is similar but picks
the maximum first difference and uses a directional second
difference for localization. The (slightly modernized) Marr-
Hildreth algorithm locates boundaries at zero-crossings of the
Laplacian, while also checking the sign of the first difference
in the direction of the Laplacian’s gradient. The directional
Marr-Hildreth and the Max-Second algorithm replace parts of
the Marr-Hildreth computation with directional differences.
Two published algorithms may differ in many ways, making
it difficult to establish what causes a particular difference in be-
havior. For this reason, the algorithms in this paper have been
reimplemented using a uniform method of suppressing noise
(Section IIT)! and a uniform output representation (Section II).
Obvious deficiencies in the algorithms have been repaired, and
attempts have been made to pin down details left vague in their
published descriptions so that the true worth of each method
can be accurately assessed.
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LA separate study [1] compares several methods of suppressing noise.
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Fig. 1. Left: a cell complex with boundaries. Some boundaries lie on cells
(shaded). Others lie on the sides or vertices between cells (thick lines and
dots). Right: the region topology of the image modeled by deleting all points
in the boundaries.

1. THE OUTPUT REPRESENTATION

The new implementations use a common output format,
which allows on-cell boundaries, intercell boundaries, and
combinations of the two. An image has been modeled as a
complex of space-filling cells, as is illustrated in Fig. 12 A
piece of boundary can lie either on a cell, on the common side
of two cells, or on the common vertex of four cells. The set of
boundaries is, however, required to be a closed set, that is, 1)
if a cell belongs to the boundaries, its sides must also belong to
the boundaries, and 2) if a side belongs to the boundaries, its
ends must also belong to the boundaries. Boundary thickness
is used to encode uncertainty in location.

Image values are regarded as samples from an underlying
continuous function, and thus, the output of an edge finder is
regarded as a description of features in a continuous intensity
surface. As in [2] and [4], the effect of boundaries on an image
is modeled by deleting all points in the boundaries from the
image (Fig. 1). The remaining open set is given the topology,
metric, and differential structure that it inherits as a subspace of
the image. This model of the regions in an image avoids the
connectivity paradoxes found by [5]—[7], and it generalizes
easily to other tesselations [2]. Further, boundary thickness
does not affect the topology.

The choice between on-cell and intercell boundaries de-
pends primarily on the edge operators used. If the algorithm
uses a first or third difference mask centered between two cells
or a second difference mask centered on a cell, boundaries
should be placed between cells. Using on-cell boundaries
requires complicated tests [8] to avoid a systematic bias in
boundary locations. Output from other types of masks requires
on-cell boundaries.

Some types of fine texture can only be represented accu-
rately with intercell boundaries because on-cell boundaries
use up cells that could otherwise represent bits of region.
However, intercell boundaries alone cannot properly represent
a boundary that falls near the middle of a cell. In the presence

2Formally, a specialized type of regular cell complex [2], [3].
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Fig. 2. Boundary lying right in the middle of a cell (arrows show intended
boundary location) cannot be successfully represented using only intercell
boundaries. Camera noise prevents a stable choice between the two closest
locations, creating gaps (left). Choosing both locations creates an extra
region (middle). Adding on-cell boundaries (right) ensures the correct region
topology.

Fig. 3. Thickened boundaries make it easier to represent junctions that do

not fit nicely into the image digitization.

of noise, the edge finder will be unable to make a stable choice
between the two sides of the cell. Marking both or making an
unstable choice between them causes mistakes in the region
topology. This can be avoided by adding on-cell boundaries
(Fig. 2). On-cell boundaries also allow a better approximation
of junctions that fit poorly into the cell structure (Fig. 3).

Thinning would be required to make this output suitable
for standard boundary trackers. It is easier to track region
borders, as in [9]. Define a piece of region border to be a
boundary vertex or side, together with a nonboundary cell of
which it is a face. The boundaries in Fig. 4 generate three
connected chains of regions borders. Region borders are easier
to handle than boundaries because they always form thin,
simple closed curves,® even when boundaries are thick, branch,
or end abruptly. To track borders, first handle any isolated
boundary vertices. Then, start at any cell side in the border. To
move to the next cell side in the border, keeping the boundary
to the left, the four continuations in Fig. 5 are tried in the
order shown.

III. METHOD OF NOISE SUPPRESSION

All edge finders implemented in this paper use a common
method of noise suppression, motivation for which can be
found in [1]. Before processing, the input image is smoothed
with a 2D Gaussian mask of standard deviation 1 cell.* Edge
operators are then applied in ways that depend on the particular
algorithm. The output of each operator is thresholded, i.e.,
responses below a given level are treated as if they were zero.

3Except where they run off the edges of the image. This special case can
be avoided by encircling the image with a one-cell-wide band of nonboundary
cells.

4Smoothed values are stored to the nearest 20th of an intensity unit.

Fig. 4. Y-shaped boundary (left) generates three connected chains of region
borders (right).
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Fig. 5. Tracker can continue forward from a border cell side, keeping the
boundary to its left, in one of four ways. They should be tried in the order
shown.

No hysteresis, thinning, noise estimation, or similar algorithms
were used, even if present in the original implementations.

Noise in our camera system has been measured [1] and
can be approximated as additive Gaussian noise of standard
deviation 1.0 intensity units (IU) (1.04 IU when quantization
effects are included). The threshold for each operator is set
at 5.0 times the expected deviation of noise in the operator’s
output when applied to camera noise. For finite differences,
this can be found by convolving the finite difference mask with
the digitized Gaussian mask used in smoothing, taking the root
sum of squares of the mask weights, and multiplying by the
standard deviation of camera noise (1.04). Nonlinear operators
were approximated by linear ones; therefore, thresholds may
not be precisely comparable. However, experience suggests
that the artifacts discussed in this paper are not sensitive to
exact threshold settings.

These algorithms differ only slightly in overall ability to
separate real features from noise. All require that the response
of either a second difference or a third difference operator
be significantly different from zero (even Canny’s algorithm;
see below). A third difference operator has a worse signal-
to-noise ratio overall. However, in the immediate vicinity of
a step edge, second differences are near zero, whereas third
differences are near their peak values. Thus, when actual
detection thresholds are calculated (see [1]), third difference
tests turn out to be as reliable and sometimes more reliable.

IV. CANNY’S ALGORITHM

Canny’s algorithm [10], [11] marks boundaries at maxima
in the magnitude of the image gradient in the direction of
the gradient. The following algorithm is copied, except where
noted, from Canny’s original LISP implementation and gives
almost identical output. Similar algorithms are described in
[12]-[18].
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Canny’s code used the masks

ER A
to compute the X and ¥ components of the gradient. However,
this method creates a systematic bias in the boundary locations.
Instead, the new implementation uses the mask [-1,0,1] to
compute first differences in four directions: H (horizontal), V
(vertical), Dy, and D (diagonal). The X and Y components
of the gradient are computed by projecting the diagonal
differences onto the axes’:

D, +D
X:H+—1;—f2
Y:V+————D1;D2.

The amplitude of the gradient is then

A = X2 + },2.

At each cell, a value is then interpolated for a pseudo-cell
in the gradient direction. Values are extracted from the two
neighboring cells closest to the gradient direction: one from a
horizontal or vertical neighbor (A, ) and one from a diagonal
neighbor (Ag4). Let B be the larger of the magnitudes of X
and Y, and let S the smaller. The pscudo-cell’s value is then

(B - SYApy + SAy

Ay = 7

A value A_, for a pseudo-cell in the opposite direction is
computed in the same way. A cell (z,y) is marked as a
boundary if A(z,y) is greater than a threshold T3 (currently
3.00 1U), A(z.) > Ay(z.y), and A(z,y) > A—g(z.)-
Figs. 6—8 show the output of this algorithm on a real camera
image and a test pattern (described fully in the Appendix).
The output for the real image looks noisy. Boundaries for the
synthetic image wobble, and there are spurious boundaries in
the slope. T} is often set higher to disguise these problems, but
they actually reflect a flaw in Canny’s design. His algorithm
marks a cell as a maximum if its amplitude is larger than that
of its neighbors without checking that these differences are
higher than those expected from random noise. This makes the
algorithm slightly more sensitive to faint edges than, e.g., a
Marr-Hildreth [19] but causes it to report spurious and unstable
boundaries wherever there is a nontrivial slope in intensities,
such as on smoothly shaded objects and on blurred boundaries.
These problems can be eliminated with a better peak detec-
tor. Just adding a threshold to Canny’s peak detector eliminates
real boundaries if they lie approximately halfway between
two cells. Instead, the new implementation interpolates two
additional pseudo-cell value A, and A_gg using values
2 cells from the starting location. A cell (z,y) is then marked

5The % weight on the diagonal contributions is the product of two weights
of L. One of these corrects for the longer intercell distance used in the
diagonal differences. The second is the appropriate weight for projecting the
diagonal vectors onto the two axes, ie, sin(45°) = cos(43°).
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Fig. 6. 256 by 256, 8-b image of a terminal.
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Fig. 7. 300 by 225 synthetic test pattern (top) and the degraded version of the
image given to the edge finders (bottom). The patterns are named: (left) square
checkerboard, triangular checkerboard, bricks, (middle) triangles, wavy bars,
dots, (right) Clark pattern slope, staircase. For more details, see Appendix.

as a boundary if

Alz,y) > Th

Ay(e,y) - Aley) < T
A_g(z,y) — Alz,y) < T2
Az, y) — Agglz,y) > T
A(z.y) = Agga,y) > Ts.

and

T, and T3 are currently set at 3.75 and 5.1 IU.
Fig. 9 shows the output of Canny’s algorithm with the
improved peak detector. It produces gaps at the sharp corners
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Fig. 8. Output of Canny’s algorithm on the two test images.

in the triangles, at the ends of the wavy bars, in the pattern
of dots, and at some junctions. There are spurious ring-like
boundaries around junctions of four or more regions and
spurious dots in the triangles ( perhaps related). Output using
Canny’s original peak detector (Fig. 8) is similar but has fewer
broken corners.

V. BOIE-COX ALGORITHM

Boie and Cox [20], [21] have proposed an algorithm similar
to Canny’s but they replace the peak detector with second
difference zero crossings and the gradient direction with the
direction of maximum first difference (cf. also [16], [22]).
Published descriptions of this algorithm are missing vital
details, which were inferred from the authors’ code.

The new code computes first and second differences in four
directions, using the masks [—1,0,1] and [—1,1.1,—-1]. Let
M be the amplitude of the maximum first difference, F' and S
the first and second difference values in some direction, and
(dz, dy) a one-pixel displacement in the same direction.® For
a cell (z,y) to be marked as a boundary in this direction, the
first difference must be nontrivial and close to the maximum:

|F(z,y)|>T1 and M(z,y) — |F(z.y)| < To.

The cell must also be at a second-difference zero-crossing,
i.e., one of the following, or one of the similar expressions
with < and > reversed must hold:

1) S(z—f—%’”,y%— d7y>> Ts andS(z—%,y—%’i)< — T3,
or

61.e., a vector of unit length horizontally or vertically. length V2 diagonally.

( '“}“.“.5.“}“')

A,

; ¥,

‘ E:nn A600a0) E

i cooooac) E
S

| Gooaono

Fig. 9. Output of Canny’s algorithm with improved peak detection on the
two test images.

2) [S(x+ %y + @) <Ty, S(u+ 3y + )< -1y

and S(.’rf ‘%’.y— %)

3) |S’(:1: - %I.y~ dTy) l < T;;,S(w - %\y— %}i)<—T3
and S(m—f— do g4 %y) > T

Currently 77 and T are 1.95 IU, and T3 is 2.25 IU. In the

original Boie and Cox design, T3 is zero. Just like the miss-

ing threshold on Canny’s peak detector, this causes wobbly

boundaries and spurious boundaries on slopes (Fig. 10). Boie

and Cox set T3 very high to compensate.

As Fig. 11 shows, this edge finder produces rings around
junctions of four or more regions, like Canny’s algorithm. It
breaks only a few sharp corners, but others have short spines
sticking out of them. There are spurious boundaries in the
staircase pattern at some junctions in the Clark pattern and
along the bottom edge of the terminal keyboard. Except for

the broken corners, these faults occur even when 73 is zero
(Fig. 10).

> Tj, or

V1. MARR-HILDRETH ALGORITHM

The Marr and Hildreth algorithm ([23], [24], cf. also [25])
locates boundaries at the zero-crossings of the Laplacian of the
image. The original version of this algorithm did not contain
sufficient safeguards to prevent spurious boundaries [26], [27]
or to prune responses due to noise. Thus, a clean, updated
version is required to illustrate its full potential.

The Laplacian is equal to the sum of the directional sec-
ond differences in all directions. The new implementation
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Fig. 10. Output of Boie and Cox’s algorithm on the two test images.

computes this using the mask:

1

V2
1
1

72

1

—4-2V2
1

1
V2
1
1

V2

Laplacian responses below a noise threshold T (currently
3.85 IU) are reset to zero.

The Laplacian is well suited to localizing boundaries but not
to detecting them. First, some zero-crossings of the Laplacian
do not correspond to sharp changes in intensity [26], [27].
Second, the Laplacian amplitude often drops below T, in
the middle of a boundary, sometimes for multiple cells if
the boundary is blurred. It is difficult to distinguish these
zeros from zeros in the middle of uniform-intensity regions.
(Many implementors must have encountered this problem, but
it seems to have received no theoretical attention.)

Therefore, the new implementation adds a second detection
map to the algorithm. It computes the gradient of the Lapla-
cian, as in [23], but goes on to compare its sign with that of
the image first difference in the same direction (computed by
adapting Canny’s pseudo-value code). The detector responds at
a cell if the amplitudes of the first and third differences are over
noise thresholds T, and T3 (currently 1.95 and 11.95 IU) and
the two differences have opposite signs. A cell is then marked
as a boundary if the detector responds and the Laplacian is
zero. The common side of two cells is marked as an intercell
boundary if the detector responds at both cells, and they have
Laplacian responses of opposite, nonzero signs.

This method of combining first and third differences is an
extension of the proposals in [17], [26]~[29]. It would also be
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Fig. 11.  Output of Boie and Cox’s algorithm with thresholding of second

differences on the two test images.

possible to take both differences in the image gradient direction
[17] or take a vector combination [27]. Some researchers may
have been discouraged from using such methods by the poor
results presented in Clark’s paper [27]. Clark does not explain
why he found it necessary to use such large smoothing masks
(standard deviation 10 cells). A direct implementation of his
mathematics, however, would involve examining the sign of
the product of the first and third differences. This would be
substantially more sensitive to noise than testing the two signs
individually.

The new detection map may have uses beyond the immedi-
ate problem of edge detection. For well-separated boundaries,
the edges of the detector regions mark the peaks and troughs
of the second difference, which is believed by some [30] to be
useful in stereo matching. The width of the response regions
could be used in estimating boundary blur [31]. Finally, the
detector map can help separate the second difference responses
of roof edges from those of nearby step edges, making them
easier to identify [32].

Fig. 12 shows the output of the new algorithm. It produces
slight distortions of boundary shape near the junctions in
the Clark pattern. Some junctions in the Clark pattern, the
hexagonal checkerboard, and the staircase have small gaps.
There is a spurious boundary inside the end of the slope, and
the regions in the brick pattern have been rounded.

VII. THE DIRECTIONAL MARR-HILDRETH
AND MAX-SECOND ALGORITHMS

The final two algorithms illustrate ways of adapting the
Marr-Hildreth algorithm to use directional differences. The
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Fig. 12.  Output of the Marr and Hildreth algorithm on the two test images.

first, the directional Marr-Hildreth, continues to use the Lapla-
cian for location. The detection map, however, is obtained
by computing the directional first and third differences in
four directions using the masks [—1,0,1] and [-1,2,0, ~2,1].
Values below 77 and T3 (currently 1.95 and 3.05 IU) are reset
to zero. The detector responds if there is some direction in
which the first and third differences have opposite nonzero
signs.

The Max-Second algorithm uses the same detection map as
the directional Marr-Hildreth. For location, however, second
differences are computed in four directions using the mask
[1, -2, 1], Diagonal differences are divided by v/2. The maxi-
mum positive P and minimum negative N differences at each
cell are then extracted. If P+ N is greater than a threshold T»
(2.10 TU), the cell in the location map is assigned the value
P'If P+ N < =Ty, it is assigned the value N. Otherwise,
it is set to zero.

Figs. 13 and 14 show the output of the two variant algo-
rithms on the test images. These are almost identical to the
output of the Marr-Hildreth algorithm. The only significant
difference is that these algorithms generate spurious bound-
aries along the sides of the slope pattern as well as along its
end.

VIII. SPURIOUS BOUNDARIES
The most noticable edge finder artifacts are reports of
boundaries in regions entirely lacking sharp intensity changes.

7In other words, P must not only be larger than 2\, but this difference must
be distinguishable from the effects of noise.
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Fig. 13.  Output of the directional Marr and Hildreth algorithm on the two

test images.
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Fig. 14. Output of the Max-Second algorithm on the two test images.

The Boie-Cox algorithm (as well as the original Marr-Hildreth
code) produces spurious boundaries in staircase intensity pat-
terns and at staircase-like region junctions for reasons de-
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Fig. 15. Straight across the end of the slope in the test image and diagonally
across its sides, the smoothed intensities have roughly the shape shown. The
transition to zero in the directional second differences occurs while the first
and third differences still have opposite, nonzero signs, generating a spurious
boundary in addition to the real one.

scribed in [16], [19], [27], and [33]. The other algorithms
prevent this by comparing the sign of the first difference to
the sign of the third difference or ensuring that the magnitude
of the first difference is a local maximum.

It is less well known that spurious boundaries can occur
on slopes. We have seen that the original versions of the
Canny and Boie-Cox algorithms generate spurious and un-
stable boundaries throughout the slope because they (ef-
fectively) examine the signs of second differences without
ensuring that these signs are reliable. The three variants of the
Marr-Hildreth algorithm produce spurious boundaries inside
the end of the slope, and two produce them inside its edges.
As Fig. 15 illustrates, these are not proper ze€ro crossings, but
rather transitions to zero in which the detector responds after
the location map has already become zero. It is unclear how
to avoid these artifacts since similar response patterns occur
at real but faint boundaries in other images.

IX. SHARP CORNERS

The five edge finders show a variety of artifacts at sharp
corners: distortions of shape, gaps, and spurs. Theoretical
analysis has been carried out only for the Canny and Marr-
Hildreth methods and only for noise-free images. Zero cross-
ings of the Laplacian were found [26] to go through the true
corner but bulge out on the sides. Maximum errors® were v/2
cells for an infinitely acute corner and 0.9 cells for corners
more than 30°, which is barely large enough to observe in
nearest pixel representations. The gradient peak boundary {19]
follows the sides of the corner closely but is flattened in at the
end, missing the true corner entirely. The maximum deviation
is large: about 2.3 cells for a 30° corner and unbounded in
the worst case.

When noise is present, the Canny and Boie-Cox algorithms
break some sharp corners. There seem to be two distinct
causes. First, the second difference in the gradient direction,
i.e., straight out the corner, may have too low an amplitude to
be reliably distinguished from zero. The three Marr-Hildreth
variations avoid this problem by using third differences and by

8The current implementation uses smoothing of standard deviation 1 cell
applied twice—once in the camera and once in the edge finder—giving a total
standard deviation of v/2 cells.
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Fig. 16. On a sharp corner (left, dotted line), gradient peak algorithms return
a flattened corner (left, solid line). Locations near the tip of the curve are
amplitude peaks in the gradient direction (middle). However, small errors in
computing the gradient direction (right) can make the peak detector compare
the magnitude at the tip to a magnitude along the side of the corner, which
is much higher.

taking their second differences in several directions, including
across the corner.

However, even if all thresholds are tuned low, Canny’s
algorithm still breaks corners. Ideally, the magnitude at the
tip of the reported boundary is a maximum in the gradient
direction. However, points along the sides of the corner lie
very close to this gradient direction and have magnitudes much
higher than that at the tip (Fig. 16). As noted in [15], a slight
error in computing the gradient direction, e.g., due to camera
noise, can cause the tip not to be marked as a peak.

Finally, the Boie-Cox algorithm sometimes produces spurs
protruding from a sharp corner. This has not received detailed
theoretical attention. However, the problem seems to be that
the second-difference zero crossings from different directions
occur in noticably different places, but the first differences in
these directions are all at or near the maximum amplitude.
This effect is markedly worse if intercell boundaries are used.

X. JUNCTIONS

When three or more regions touch at or near a common
point, the local configuration will be referred to as a junction.
A theoretical analysis in [19], assuming no noise, predicts dis-
tortions of shape at three-region junctions for both the Canny
and the Marr-Hildreth algorithms, as well as a gap separating
one boundary from the other two. These effects seem to be
pronounced only for the Marr-Hildreth variations and, even
then, gaps are often closed because second differences fall
below the noise threshold.

Junctions involving more than three regions have not been
formally analyzed. Although they produce connected bounda-
ries for the square checkerboard, all five algorithms produce
frequent gaps on more complex junctions, ¢.g., in the Clark
pattern or the triangular checkerboard. In addition, the Canny
and Boie-Cox algorithms produce ring-like structures around
many junctions involving more than three regions. These are
visible in some previously published results [17] but rarely
commented on. To understand why they occur, consider the
square checkerboard. The gradient must be zero at the vertex,
near zero in the middle of each region, but significantly
different from zero along the diagonal line segment joining
these two points (Fig. 17). Since the gradient direction for
points on the diagonal lies along the diagonal, there must be
a gradient peak somewhere along it.
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Fig. 17. Sketch of the gradient directions for a vertex in the square checker-
board pattern. Along a diagonal path from the middle of a square to the vertex,
there must be a peak in the gradient amplitude.

XI. CONCLUSIONS

In the previous sections, we have seen that these closely
related algorithms all produce various unwanted artifacts:

» Spurious and unstable boundaries on slopes (Canny, Boie-

Cox)

+ spurious but stable boundaries in staircase patterns (Boie-
Cox) or near the edges of slopes (Marr-Hildreth, Max-
Second, directional Marr-Hildreth)

« gaps or spines at sharp corners (Canny, Boie-Cox)

« small deformations at sharp corners (all algorithms)

* rings at junctions (Canny, Boie-Cox)

+ gaps and small distortions at junctions (all algorithms).
Which artifacts seem most obtrusive will depend on the
intended application. All the algorithms are easy to implement,
run quickly, and produce clean outputs.

Perhaps the most surprising result of this study is the simi-
larity of the algorithm outputs. In particular, the modernized
Marr-Hildreth algorithm seems to perform at least as well as
Canny’s. Some of the differences between previous implemen-
tations seem to be due to differences in thinning, hysteresis,
or subpixel interpolation algorithms, as well as differences in
threshold settings. A few may be due to small differences in the
shape of the smoothing filters or the derivative approximations
{10], [11], [14], [20], [21], but there is no direct evidence to
support this. Very different methods of suppressing noise (e.g.,
[1], [17]) could clearly have larger effects.

However, it is discouraging to uncover major differences
caused by design bugs or unclear description of algorithm de-
tails. Adding a second-difference threshold markedly improves
the performance of the Canny and Boie-Cox algorithms. The
new detection map improves Marr-Hildreth performance far
beyond that which might be supposed from Clark’s results.
Canny’s method of pseudo-cell value computation is not
published, nor is the fact that the Boie and Cox algorithm
works extremely poorly if intercell boundaries are used. Could
such details perhaps be of more practical significance than the
exact shape of the optimal smoothing filter?

APPENDIX
DETAILS OF TEST PATTERN

The test pattern is a 300 by 225, 8-b image, with white
(255) background. To simulate real imaging conditions, its
contrast was reduced to 90% (range [13 242]), it was blurred

with a Gaussian mask of standard deviation 1 cell, and finaily,
Gaussian noise of standard deviation 1.0 IU was added.

The patterns in the left-hand two columns are two valued
(0 and 255), and the true boundaries lie between pixels. The
gaps in the dot pattern (middle bottom) vary slightly in size.
The pattern in the upper right-hand corner is a simulation of a
pattern from [27], using the values 0, 127, and 254. Boundaries
lie on cells, and these cells have intermediate values. To the
left below the Clark pattern is an even slope from 0 to 255:
values in adjacent columns differ by 5 IU. To its right are bars
at values 0, 128, and 255, forming a staircase intensity pattern
whose true boundaries lic between pixels.
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