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Abstract:

This paper presents a new representation for two-
dimensional round regions called Local Rotational Sym-
metries. This representation is intended as a companion
to Brady's Smoothed Local Symmetry Representation for
elongated shapes. A local multi-scale algorithm for com-
puting Local Rotational Symmetry regions has been im-
plemented. Results are presented from this implemen-
tation and from a re-implementation of Smoothed Local
Symmetries,

Introduction

A person looking at a grey-scale camera image of
an object can easily produce a rough description of its
(two-dimensional) shape. For example, a spoon might be
described as a long thin part (the handle) joined to a
roundish part (the bowl). Such descriptions can be used
for recognition of objects, for practical reasoning about
objects and actions, and for representing the meanings of
natural language words. It is extremely difficult to get a
computer to produce even such basic descriptions of object
shape. Most existing systems for representing shape are a
poor match to human capabilities. The goal of the work
described in this paper is to produce shape descriptions
of the sort that people use.

In this paper, a revised and condensed version of
my master’s thesis," I will present a new representa-
tion for two-dimensional round regions, called Local Rota-
tional Symmetries. This representation is a companion to
Brady's Smoothed Local Symmetries,®® which represent
elongated or pointed regions. Smoothed Local Symme-
tries and Local Rotational Symmetries are computed from
the boundaries of regions in the image, rather than di-
rectly from the grey-scale image. Figure 1 shows the edges
extracted by Canny’s* edge finder from images of some fa-
miliar objects. Figure 2 shows the axes of Smoothed Local
Symmetry regions found for these objects.

Smoothed Local Symmetries provide good representa-
tions for elongated or pointed regions such as the handle
of the teaspoon or the pointed end of the pear. However,
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Figure 1. Edges from grey-scale camera images of five familiar ob-

jects: a spanner wrench (top), a squash (bottom left), a pear (mid-
dle), a lemon (middle right), and a teaspoon (bottom right).
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Figure 2. A Smoothed Local Symmetry analysis of the images from
Figure 1. The thick lines are the region boundaries from the images.
The thin lines are the axes of Smoothed Local Symmetry regions.
Smoothed local symmetry regions include elongated regions such as

the handle of the teaspoon and pointed regions such as the pointed
end of the pear.

e s e

a .

oy =

1=

ol RS

F oS &FyF



an axis-based representation will not provide intuitively
acceptable analyses for round regions, such as the lemon
or the round end of the pear, and it will be unstable on
such regions. Such regions are most naturally analyzed in
terms of a center. Figure 3 shows a Local Rotational Sym-
metry analysis of the same objects. This analysis provides
representations of round parts of the objects in terms of
intuitively plausible center locations. The combination of
the two representations provides complete descriptions of
object shapes.
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Figure 3. Local Rotational Symmetry analysis of the images in Figure
1. The thin lines show the region boundaries found in the finest-scale
version of these images. The boundary of each round region is shown
as a thicker line and selected radii from the center of the region to the
boundary are also displayed. For example, four regions are found for
the teaspoon: the bowl, the round end of the handle, and four small
round regions in edges from specular reflections on the bowl.

Smoothed Local Symmetries

Most shape representations describe the shape of an
entire region such as a rectangle, a corner, or an ellipse.
Local symmetry representations model only local sections
of a region, such as two pieces of boundary that are op-
Posite one another in an elongated region. Instances of
these local models are found in an image and then joined
together to form larger connected regions.

The Smoothed Local Symmetry representation for
elongated shapes 2356 is based on a local model for two
small pieces of boundary opposite one another in an elon-
gated region, called a local (reflectional) symmetry. The
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key observation is that two such pieces of boundary will
be approximately reflections of one another in the per-
pendicular bisector of the line segment joining them. The
perpendicular bisector is a local approximation to the axis
of the region. The line segment joining the two pieces
of boundary is called a rib and its length provides a lo-
cal width for the region. The model also specifies which
side of each boundary is inside the region. A normal to a
boundary can be used to represent a small piece of bound-
ary. The degree of local reflectional symmetry between
two small pieces of boundary can then be measured by
the angular deviation of their two normals from an exact
reflectional symmetry, as shown in Figure 4.

A Smoothed Local Symmetry region is formed by
grouping local reflectional symmetry pairs into connected
regions with connected boundaries. The current imple-
mentation uses a boundary tracking algorithm to build
regions, producing an ordered list of symmetry pairs for
each region. Adjacent ribs can share one endpoint, but
they cannot cross one another. The axis of the region is
computed by connecting the midpoints of adjacent ribs.
It corresponds well to the perceived axis of the region.

The area occupied by a symmetry region is the area en-
closed by the two boundaries and by the first and last ribs.
The symmetries in a region must progress in a consistent
direction along the axis, so that there is a consistent no-
tion of which side of each boundary is inside. In order for
a region to be perceptually salient, it should have a high
aspect ratio (ratio of length to width). A region is per-
ceived as several subregions if it contains minima of width
(except at its ends) or sharp changes in parameters, such
as sharp bends or sharp changes in width or derivative of
width.

4 C (center)

Figure 4. Left: Two small pieces of boundary A and B have a local
reflectional symmetry to the extent that the angle a between the
normal at A and AB is close to the angle § between the normal at B
and AB. Right: A small piece of boundary D has a local rotational
symmetry about a center C to the extent that the angle i between
DC and the normal to the boundary at D is small.




A Smoothed Local Symmetry region may be created
by joining two regions into one longer region, by creating
sections of boundary that are not in the input image. The
new region, including points created in the join, should
meet all the previous requirements for a good Smoothed
Local Symmetry region. Furthermore, the area of the join
should be small compared to the width of the region and
to the lengths of the boundaries that were actually present
in the input.

Smoothed Local Symmetries offer several advantages
over previous shape representations. The local symmetry
model plus rules for building regions allow one to compute
representations for a wide class of regular and irregular
shapes using simple algorithms. Programs using whole
region models, such as Generalized Cylinders,” typically
search for only a restricted class of shapes, because the al-
gorithms for fitting a region model to input boundaries are
conceptually difficult. The local symmetry representation
includes a constructive definition of the axis of an elon-
gated region. Finally, the local symmetry representations
take advantage of boundary connectivity information, un-
like the Hough Transform.®

Problems with Smoothed Local Symmetries

The goal of the current work is to develop a local sym-
metry representation for round regions. Circles are ob-
viously round regions, but perfect circles rarely occur in
natural objects. So I also include regions which are slight
deformations of circles, such as ovals. Round bumps or
dents and round ends of elongated regions are also in-
tuitively round. I will also consider spirals to be round
regions because they are intuitively round and an anal-
ysis for them follows automatically from the analysis of
other round regions.

Smoothed Local Symmetries provide a good repre-
sentation for elongated regions, but the Smoothed Local
Symmetry analysis is not intuitively plausible for round
regions. Round regions are naturally described in terms of
a center, rather than an axis. Furthermore, the Smoothed
Local Symmetry representation is infinitely degenerate
and unstable on round regions. A circle has infinitely
many possible symmetry axes. A region which is only
close to circular has only a small number of possible sym-
metry axes, but these axes are generally not perceptually
salient. Figure 5 shows many non-salient axes computed
for the round end of the pear by Brady and Asada’s® im-
plementation. Small changes to the shape of the region
drastically change which axes are possible.

Representing round regions requires two additions to
Smoothed Local Symmetries: a better representation for
round regions and a method for suppressing reflectional
symmetries within round regions. My implementation
does not suppress all reflectional symmetries within round
regions, but only symmetry pairs which are not locally
optimal. Thus, it does not suppress the reflectional sym-
metry regions in the corners of a hexagon or the spiral
axis between two concentric spiral boundaries. My test
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Figure 5. The Smoothed Local Symmetries of the pear, as computed
by the Brady and Asada® implementation, which did not consistently
suppress axes within round regions.

for local optimality is crude, but the results are cleaner
than those of previous implementations, which did not
suppress these symmetries in a principled way.

Smoothed Local Symmetries are also unstable and
counter-intuitive on straight or almost straight bound-
aries, and they fail to represent regions which are bounded
by one straight side, such as background regions which
extend beyond the field of view. As in previous imple-
mentations, I suppress local symmetry pairs in which the
two boundaries are close to collinear. However, I do not
yet have a representation for these regions.

Local Rotational Symmetries

In addition to suppressing Smoothed Local Symme-
tries within round regions, we need a local symmetry rep-
resentation for these regions. I have developed such a
representation, called Local Rotational Symmetries. Like
Smoothed Local Symmetries, Local Rotational Symme-
tries will be defined in terms of a local symmetry model
and criteria for building connected regions from these lo-
cal symmetries.

The key idea is that, in a perceptually round region,
local sections of the boundary are close to being rotation-
ally symmetric about the perceived center of the region.
That is, if the boundary is rotated a small amount about
the center, it rotates approximately onto itself. I use the
normal at a point on the boundary to represent a small
piece of boundary. The angular distance between this
normal and the line segment joining the boundary point
to a center point can then be used to measure the de-
gree to which the piece of boundary is locally rotationally
symmetric about the center, as shown in Figure 4. The
distance from the boundary point to the center is a local
measure of the radius of the region. The local model also
specifies which side of the boundary is inside the region.

A Local Rotational Symmetry region is formed by join-
ing together sections of boundaries with local rotational
symmetries to a common center location, to form a con-
nected region with a connected boundary. The area occu-
pied by the symmetry region is enclosed by its boundary
and by the line segment joining the ends of the boundary
(if the boundary is open). The boundary must proceed
in a consistent direction around the center, so that there



is a consistent notion of which side of the boundary is in-
side. Spiral regions do not coherently bound an area. A
round region is more perceptually salient if its boundary
has a long angular length. That is, all other things being
equal, a closed boundary forms a better round region than
a half-open region, which is better than a boundary with
a shallow curve.

Brady's? original definition of Smoothed Local Sym-
metries required that the two points in a symmetry pair
have an exact reflectional symmetry. In round regions, it
is not possible to use exact symmetries. Smoothed Local
Symmetries relate only two pieces of boundary to each
local axis of reflection, whereas Local Rotational Symme-
tries relate many pieces of boundary to a common cen-
ter of rotation. Thus, deformation causes points on the
boundary of a round region to have inexact symmetries, as
much as 30-40 degrees from perfect symmetry in a percep-
tually round oval. Building rotational symmetry regions
requires a compromise between increased length and in-
creased deviation of the boundary points. My use of inex-
act symmetries is the largest difference between Local Ro-
tational Symmetries and the Symmetric Axis Transform.’

Smoothed Local Symmetries can also be made less sen-
sitive to noise by using inexact symmetry pairs. The cur-
rent implementation uses symmetry pairs which are up to
20 degrees from an exact symmetry and is less sensitive
to noise than previous implementations.®® Successful use
of inexact symmetries depends on constructing regions by
building connected boundaries, rather than by building
connected axes.

The connected boundary of a round region may be
formed by joining disconnected sections of boundary, since
attachment or occlusion may remove part of a region
boundary. The new boundary, including points added to
fill the gap, must meet all the previous criteria for a good
Local Rotational Symmetry region. Joining disconnected
pieces of boundary is only perceptually plausible if the
length of the gap is small compared to the lengths of the
real boundaries. However, the total percentage of real
points in the new region does not accurately measure the
plausibility of a join. Rather, it is the percentage of real
points locally which is crucial and there is a maximum an-
gular length (about 40-50 degrees) beyond which it never
seems plausible to make a join.

To a local algorithm, considering only a limited range
of angles, an open boundary looks just like a gap to be
connected and a spiral looks just like a slightly deformed
circle. This makes the correct prediction that the ends of
an open boundary will be joined under the same condi-
tions as other gaps. In particular, round bumps with a gap
larger than 40-50 degrees and round ends of elongated re-
gions are best described using open boundaries, since the
area they occupy seems to be bounded by a partial round
arc plus the line joining its ends. A second corollary is
that spirals will be analyzed as round regions.

Evaluation of a proposed round region involves a
tradeoff among the various factors described above. The
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implemented evaluator uses an empirically determined
combination of these factors. Although human evalua-
tion of regions seems to be local, the formula used in the
implementation is not local, due to the inevitable lag be-
tween theory and implementation. Results of the program
suggest that the penalties for joining disconnected bound-
aries are too low. Fine-tuning the evaluation is a topic for
future research.

Since Local Rotational Symmetries are not exact, a
typical round region has plausible analyses using centers
near the perceived center, in addition to an analysis using
the perceived center. Also, a fixed center may generate
multiple regions which are similar, but with variations in
boundary points and joins. A region which is similar to
another region with a better evaluation is not perceptually
salient. Thus, picking out just the perceived center of a
round region requires finding locally optimal pairs of a
center and a boundary.

The current implementation first computes the best
regions for each center location using a heuristic tech-
nique for constructing the best connected regions for a
fixed center location. For each region, the program com-
putes a center location and an ordered list of boundary
point locations relative to the center. See Fleck! for de-
tails of the algorithm and its results. This algorithm is
not optimal, but the regions that it produces look good.
Once candidate regions have been computed for all cen-
ter locations, the locally best regions are selected from
among them. The current implementation suppresses a
region when more than 50 percent of its boundary points
are the same as the boundary points of a better region.

Computation at multiple scales

The shape representations discussed above represent
shapes at a fixed resolution. Consider the boundaries of
the key shown in Figure 6 (left). The overall shape of
the key is a round part plus a long part, but the key
also has small teeth on its side which are crucial in ex-
plaining what the key is used for. For such objects, we
need to represent shape at multiple scales of resolution.
The coarse scales describe the overall shape of the ob-
ject and the fine scales describe the details. There has
been considerable work on multiple-scale representations,
including multiple-scale edge finding,'® multi-grid surface
reconstruction,!! describing curve or surface shape,'®!3
shape representations,® robot motion planning,'* and
high-level planning.'s

There are several ways to abstract away detail in an
image. Feature dropping techniques take a fine-scale rep-
resentation of the image and remove regions or other
features which are small or “unimportant.” Threshold
changing involves changing the setting of a threshold that
is used to select which features are “salient enough.” Such
techniques are useful, but they cannot produce qualitative
changes in representation between scales, such as between
the overall shape of a brush and the shape of its bristles.
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Figure 6. The edges from a image of a key, at three scales (of eight).

Smoothing techniques, on the other hand, can pro-
duce such qualitative changes. For two-dimensional im-
ages, there are two alternatives: smooth the image and
then find region boundaries or extract fine-scale region
boundaries and smooth them. In my implementation, the
image is smoothed with a Gaussian and sampled at a rate
proportional to the amount of smoothing, creating a pyra-
mid structure in which each image is half the area of the
preceding one. Figure 6 shows the edges for three scales
for a key. The edges at each scale are matched (many to
many) to edges at adjacent scales with similar location
and orientation.

Previous implementations of local symmetries smooth
the boundaries, rather than the image. Smoothing the
image is more robust. Current boundary smoothing tech-
niques cannot proceed across gaps in the boundary or
across places at which several boundaries meet. Boundary
smoothing cannot merge two adjacent regions when there
are disconnected boundaries, as in a grating. Deciding
whether to keep two regions distinct or merge them re-
quires higher-level knowledge. Image smoothing generally
blurs nearby objects into one another, but it is possible to
inhibit smoothing across particular boundaries.!®1¢ Thus,
it gives high-level processing both options. Similarly, im-
age smoothing should allow very thin regions to be either
blurred away or selectively retained.

It is not practical to compute local symmetries be-
tween all pairs of two boundary points or a boundary point
and a center. Such a computation grows as O(n?) in the
area of the image. Data compression techniques, such as
the curvilinear boundary approximations used by Brady
and Asada,® do not change the rate of growth. In order
to make the computation efficient, I restrict exhaustive
computation to be local at each scale. Smoothed Local
Symmetries are only computed exhaustively for bound-
ary points within 15 pixels of one another and Local Rota-
tional Symmetries are only computed for boundary points
and centers at most 8 pixels apart.

In order to compute fine-scale representations of larger
regions, it is necessary to pass suggestions from coarser
scales to finer scales. For each coarse-scale region, the
program locates the fine-scale boundary points that match
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Figure 7. Local Rotational Symmetry (top) and Smoothed Local
Symmetry (bottom) analyses of the key at three scales.

the coarse-scale region boundaries and (for round regions)
fine-scale center locations that could match the region cen-
ter. Local symmetries are then computed between these
fine-scale points. Region building combines symmetries
from the local exhaustive computation and symmetries
from suggestions. Thus, the program can build regions
which change drastically in width over their length, such
as spirals or pointed corners. Figure 7 shows the output
of the local multi-scale algorithm on the key boundaries.

The symmetries eliminated by locality seem not to be
perceptually salient. For example, Figure 8 shows the
Smoothed Local Symmetries of the key at a fine scale, as
computed by the Brady and Asada® code. Many of the
axes in this analysis are between tiny pieces of boundary
in unrelated parts of the figure and they strike people as
meaningless junk. While these symmetries can be filtered
out as having poor aspect ratios,>® locality prevents them
from ever being computed.

Regions at adjacent scales which are basically the same
can be matched and the multi-scale representation sum-

Figure 8. The Smoothed Local Symmetries of the key at a fine scale,
as computed by the Brady and Asada® implementation, which was
not local.
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marized by describing the range of scales at which each
distinct region occurs and how each region is replaced by a
different set of regions at a finer or coarser scale. This type
of summary is what Witkin!7 calls a “scale-space” repre-
sentation. A rough version of this has been implemented,
but more work is needed to handle the different ways that
two-dimensional regions can change between scales, For
example, a region can break up into multiple regions and
a pointed corner elongates as more detail is added at its
end. This analysis is more complex than the analysis of
Witkin’s one-dimensional features.

Conclusions and Future Work

The system described above has been implemented
and the Local Rotational Symmetry part has been tested
on about 40 images (see Fleck! for details). The current
implementation does not yet join disconnected Smoothed
Local Symmetry regions, although Connell® did this for
the Brady and Asada implementation. The examples
shown are among the simpler images tested, but they
are typical of its performance. In general, the program
produces an intuitively reasonable set of regions for each
figure and it is not sensitive to clutter or distortion.

This implementation is slow. Analysis of the pear fig-
ure to the finest scale takes about three hours. However,
the current algorithm is far from optimal. Since the shape
representation is local, the asymptotic complexity of an
optimal algorithm should be linear in the size of the input
and it should speed up drastically on parallel hardware.

There are many ways in which to this work could be
extended, including building three-dimensional local sym-
metry representations, using region intensity information
to avoid symmetries between boundaries with different in-
terior colors, converting the raw symmetry output into a
decomposition of a figure into subregions, and computing
symbolic descriptions of the regions.
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