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Abstract
This study investigated the relation between various acoustic
features and prominence. Past research has suggested that du-
ration, pitch, and intensity all play a role in the perception of
prominence. In our past work, we found a correlation between
these acoustic features and speaker agreement over the place-
ment of prominence. The current study was motivated by a
need to enrich our understanding of this correlation. Using the
Bayesian information criterion, we show that the best model for
a feature that cues prosody is not necessarily a single Gaussian.
Rather, the best model depends on the feature. This finding
has consequences for our understanding of the role of these fea-
tures in the perception of prosody and for prosody recognition
systems.
Index Terms: prosody, prominence, Bayesian Information Cri-
terion

1. Introduction
Prosody serves an important role in signaling the phrasing and
information structure of an utterance, through the assignment
of prosodic phrase boundaries and prominence. This study in-
vestigates acoustic encoding of prominence in American En-
glish spontaneous speech, and the perception of prominence by
listeners. Past studies have found evidence that a number of
acoustic features contribute to the perception of prominence,
including duration, intensity, and F0. However, these studies do
not always agree on which acoustic features contribute to the
perception of prominence or to the degree that they contribute
[1, 2, 3, 4, 5, 6].

Kochanski et al. ran a Bayesian classifier over acoustic fea-
tures extracted from a corpus of read and spontaneous speech
[1]. The task was to classify whether a word was prominent
or not based on these acoustic features, and classification accu-
racy was measured against expert prosody transcription. They
found that loudness provided the best classification accuracy.
A phone-level duration measurement provided the second-best
results while, comparatively, f0 was not useful for classifying
prominence.

Wagner investigated the role of of the listener’s expectation
of prominence in its perception [4]. To do this she conducted
an experimental study where subjects marked words in a text
on a sliding scale of prominence while hearing the text at a nor-
mal rate and then at an accelerated rate and finally while read-
ing the orthography. It was observed that the fast speech had
nearly flat-F0 contours and little durational variation. From the

high agreement seen across all three tests, Wagner concludes
that speakers of English perceive prominence based on their ex-
pectations in the absence of acoustic cues. Wagner also found
that predictions of prominence aligned with the duration mea-
surements and the f0 measurements, suggesting that f0 is use-
ful for the perception of prominence, counter to the findings of
Kochanski et al.

The present study looks at some of these features that cue
prosody and attempts to understand the role each feature plays
in the perception of prominence as a phonological, contrastive
feature.

1.1. Past Work

In our previous work, we collected prominence judgments for
a 35,009 word subset of the Buckeye Corpus of spontaneous
speech [7], using Rapid Prosody Transcription, a method we
developed for prosodic labeling of spontaneous speech [8]. Ex-
cerpts were transcribed for prosodic prominence by teams of
15-20 naive speakers of English. Their task was to label each
word as prominent or non-prominent in real time as they lis-
tened to short (15-60 s) excerpts. For each word, we added up
the number of labelers who labeled the word as prominent and
then divided this sum by the number of labelers for that word.
We call this value the p-score. Figure 1 shows the distribution
of p-scores over all words in our data set. Notice that the dis-
tribution is skewed, with most words having very low p-scores
(the p-score value 0 represents 40% of the distribution).

In a later study, we looked for a relation between acoustic
features and the ratings of prominence and found a positive cor-
relation between them; as acoustic values become more extreme
(e.g. duration becomes longer or intensity becomes higher) the
number of listeners who rate the word as prominent increases
as well [5]. The results of that study show that p-scores (i.e.,
measures of the likelihood that a word will be perceived as
prominent) co-vary with word frequency and the acoustic cues
to prominence.

1.2. Research Questions and Hypotheses

In linguistic models, prominence is encoded through the assign-
ment of a pitch accent to a word based on its status related
to information structure and/or its position in the phonologi-
cal metrical structure [2, 3]. This yields a categorical distinc-
tion between prominent words that bear a pitch accent and non-
prominent words that are unaccented. Previous studies show
that there are multiple correlates of prominence, so we ask if



Figure 1: The distribution of p-scores.

each correlate provides a discrete distinction between promi-
nent (accented) and non-prominent (unaccented) words. Our
first hypothesis is that each correlate of prominence defines two
distributions, one corresponding to low p-scores and one cor-
responding to high p-scores. If so, then the measure provides
a means of marking the contrast between prominent and non-
prominent words, by providing a criterion. This finding alone
would not confirm that prominence is a binary feature, but it
would lend evidence that the prominence feature is discrete.
Furthermore, if there are p-score thresholds for multiple mea-
sures, but located at different values along the p-score contin-
uum (0-1), that would suggest either that the prominence dis-
tinction is not discrete, or that there are more than two levels
of prominence. Our second hypothesis then is that the distri-
butions of values for all correlates of prominence will share the
same p-score threshold.

2. Methodology and Results
2.1. Features

Previous studies show that the perception of prominence is
multi-dimensional, with listeners taking into consideration var-
ious acoustic features, as well as their own expectation as to
where prominence should occur, based on the perceived syntac-
tic, semantic, and pragmatic properties of the utterance. For this
study, we examine the relationship between perceived promi-
nence on one hand and a subset of features found to cue promi-
nence the other hand. We test the hypothesis that values of each
feature comprise two distributions, with one cluster for words
with low p-score values (words that listeners are less likely to
judge as prominent), and one cluster for words with high p-
score values (words that listeners are more likely to judge as
prominent).

For the durational measures, we extracted timestamps from
the phoneme-level transcriptions provided by the Buckeye cor-
pus. The word duration was calculated by taking the differ-
ence of the timestamps that marked the beginning and end of
the word utterance.

For the stressed vowel duration, we first needed to find
the stressed syllable, which is not labeled in the Buckeye Cor-
pus. Using the International Speech Lexicon (ISLEX) dictio-
nary, which contains phoneme-level dictionary pronunciation
with stress markings, we estimated the location of the vowel

carrying primary stress in the transcriptions in the Buckeye Cor-
pus. With the location of this vowel, we were able to determine
its duration from the phoneme-level timestamps provided by the
Buckeye corpus. The word frequency was taken from Google’s
unigram dictionary which is a list of word frequencies extracted
from a corpus of over one trillion words. We have included
word frequency because in a previous study we showed that
there was a negative correlation between word frequency and
prominence [6].

Pre-word pause was included as a model of disfluencies,
which have been found to be correlated with the introduction
of new information (and thus prominence). Arnold et al. in-
vestigated the relation between disfluencies and word expecta-
tions in listeners [9]. Given a partial phrase such as “Click on
the uhh red...”, subjects were asked to choose the next word.
They were given the choice between a new word or a word al-
ready in the discourse. They found that the presence of a dis-
fluency causes the listener to expect the introduction of a new
word. As prominence is used to introduce new items into the
discourse, we include pre-word pause duration (considered as
a kind of disfluency) as a feature in this study. Similarly, we
consider the post-word pause. In addition to indicating disflu-
ency, pauses in speech mark the prosodic phrase boundaries. In
English, the final word in a prosodic phrase often bears nuclear
prominence and as such, prominence and the post-word pause
phrase boundaries often coincide. For this reason, we consider
the post-word pause in our set of features. Both the pre-word
pause and the post-word pause are calculated from the phone-
level timestamps between words in the Buckeye corpus.

After collecting the values for these features, the log trans-
form was taken for each value. Values of 0 were discarded,
which in the case of the pause durational measures constituted a
significant proportion of the distribution. Due to the annotation
scheme used in Buckeye where the last timestamp for one word
often coincides with the start timestamp of the next word, there
is no pause value between approximately 80% of the words. As
a result, pauses are under reported in the transcription.

2.2. Methodology

We compared different partitions for each of the following in-
dividual features: word duration, stressed vowel duration, word
frequency, intensity, pre-word pause duration, and post-word
pause duration. We partitioned the features into two halves at
sixteen different thresholds based on their associated p-score.
Thus, the left partition would contain feature values for words
with fewer prominence judgments and the right partition would
contain feature values for words with greater prominence judg-
ments. We also considered the original unpartitioned feature
sets, corresponding to a model where the given feature does not
yield a discrete prominence distinction.

The problem of determining where to segment p-scores is
qualitatively similar, in some ways, to the problem of segment-
ing meeting-room speech into segments corresponding to dif-
ferent talkers. In both cases, we wish to make as few assump-
tions as possible, e.g., we do not want to assume that we know
how many segments there should be. The problem of speaker
segmentation is often solved using a Bayesian Information Cri-
terion (BIC) [10]. The BIC measures the mutual information
between the parameters of any given model and the observed
data, under the assumption that the parameters themselves are
random variables generated by randomly resampling the train-
ing data. The BIC thus takes the form of a penalized log likeli-



Figure 2: These graphs plot the p-score threshold as a function of the ∆BIC. BIC scores are calculated from the Gaussian distribu-
tions created by the p-score threshold. A p-score of zero corresponds to the ∆BIC score for the single Gaussian model. The largest
BIC score on each plot is marked with a ’*’ and a vertical line.

hood function,

BIC(X;Λ) = logF (X;Λ)− (k/2)ln(n) (1)

where Λ is a parameterized distribution model containing k
parameters, and X is a dataset containing n observations. The
likelihood F (X;Λ) is guaranteed to increase when the dataset
is segmented, and separate model parameters are trained using
each half of the data. The entropy penalty (k/2)ln(n) mea-
sures, in effect, the expected increase in the log likelihood. Thus
we can compare two models by computing

∆BIC = BIC(X;Λ1)−BIC(X;Λ2) (2)

If ∆BIC is positive, it means that model Λ1 fits X better
than Λ2 by a greater-than-expected amount; if ∆BIC is nega-
tive, the improvement in fit is less than expected. This is not a
significance test; ∆BIC > 0 does not mean that Λ2 is rejected
with 95% confidence, it only means that Λ1 is better.

For each model, the BIC outputs a score. To compare
scores, for each feature we computed the difference between
each BIC score with the BIC score of the single Gaussian
model. The BIC score difference as a function of the p-score
is rendered in figure 2. The model with the highest score for
each feature is considered to be the optimal model for that fea-
ture. The optimal models are summarized in table 1.

3. Discussion
The first thing to note about the results (figure 2 and table 1) is
the lack of uniformity in the distribution of BIC scores. While
some features do share the same p-score threshold, the distribu-
tion of BIC values for each feature is different. Moreover, some
features are better modeled by a single Gaussian while others
are better modeled by two.

Feature Model P-score threshold
Word duration Single Gaussian N/A

Stressed vowel duration Single Gaussian N/A
Word frequency Two Gaussians 0.125

Post-word pause duration Two Gaussians 0.125
Pre-word pause duration Two Gaussians 0.6875

Table 1: Summary of optimal models for prosodic features.

Given the distribution of p-scores (figure 1), with about
40% of the values equal to 0.0, we would hypothesize that the
optimal partitions (if any) would act to separate very low-valued
p-scores from the high-valued p-scores where the high-valued
p-scores would be more strongly correlated with increased fea-
ture values. This expectation is realized in word frequency and
post-word pause duration which not only peak at relatively low
p-scores but the BIC scores decrease monotonically as the p-
score increases. Furthermore, for these two features, the single
Gaussian mixture is one of the worst models of the distribution–
partitioning the distribution almost anywhere will yield a better
result than not partitioning it.

For the other features, however, we found very different re-
sults. For the word duration and stressed vowel duration, the
shape of the curve is an inversion of word frequency and post-
word pause duration, flipped over the x axis, with partitions at
a low p-score providing the worst split. Instead, the optimal
distribution contains only a single Gaussian. However, note
that a partition at a very-high p-score would have almost the
same BIC score as a single Gaussian. This suggests that it may
be valid to model these features with two Gaussians (a near-
optimal model).

The distribution of BIC scores for the pre-word pause du-



ration is the most varied of all the features. It is also the only
distribution where the best partition point is at a high p-score.

It should also be noted for all five features that they have
a local maximum BIC score at a low-valued p-score. In the
case of the word duration, stressed vowel duration, and pre-
word pause duration, that local maximum is not the optimal
partition point. Regardless, this local maximum aligns with
our predictions that there is a meaningful distinction between
words with very small prominence ratings and words with larger
prominence ratings.

Our first hypothesis stated that each feature will contain two
distributions, divided by some p-score. This would reflect a
binary prominence feature, as proposed in linguistic models of
prominence. As we have seen, our hypothesis was validated in
three of the five features. For the word duration and stressed
vowel duration, we cannot say with certainty that one Gaussian
is the correct model–more investigation is needed to uncover
the optimal model for these distributions.

Our second hypothesis stated that all features will contain
the same partition point. Considering only word frequency,
post-word pause duration, and pre-word pause duration, the
three features that were best modeled by two distributions, we
can see that they do not share the same partition point, disprov-
ing our second hypothesis.

How can we explain the difference in the distribution of
these features along the p-score continuum? One possible dif-
ference corresponds to different listeners’ sensitivities. If we
assume that the prominence feature is binary, the data could
still be explained if the perception of prominence is idiosyn-
cratic. For example, one listener may be more attuned to the
duration of the stressed vowel, while another listener may be
more attuned to the intensity of the word. If such a situation
were to apply, the results of this study could be influenced by
the presence of speakers with very different strategies.

On the other hand, if we assume that the perception of
prominence is consistent across listeners, then the prominence
feature cannot be binary but may instead be gradient. Oth-
erwise, we would expect all features to have the same parti-
tion point. In other words, if features had the same partition
point, then we would end up with the same two distributions
of p-scores for every feature, regardless of the feature value.
We would expect these two distributions to correspond to non-
prominence and prominence. Thus, if we assume that the per-
ception of prominence is consistent across listeners, then in or-
der to account for the difference in partition point and number
of distributions, we would conclude that the prominence feature
is gradient. An alternative account would be that there are mul-
tiple discrete prominence features which together form multiple
”levels” of prominence.

It is also possible, and in our view more likely, that the real-
ity is some combination of speaker variation and a gradience of
prominence. If the perception of prominence is purely idiosyn-
cratic, then prominence would not be useful for the purposes
of carrying linguistic information. On the other hand, there is
evidence for some level of idiosyncracy. In our previous work,
we showed that the acoustic correlates of prominence vary from
speaker to speaker. In that study, we ran a linear regression for
each speaker, predicting P-scores from a set of acoustic mea-
sures. We found that the contribution of each acoustic variable
to the variability in P-scores varied from speaker to speaker[5].

Although our second hypothesis about a uniform prosody
threshold across features was disproved, the results are still con-
sistent with the phonological model of prosody. The partici-
pants in our study were making binary decisions as to whether

or not a word was prominent, but as noted above, this distinc-
tion may draw on multiple distinct types of prominence, e.g.,
contrastive focus, new information focus, or purely ’rhythmic’
prominence. More work is needed to investigate whether the
perception of prominence is gradient or binary.

In future studies, we will apply the methodology of BIC
analysis to investigate more correlates of prominence and will
investigate the relationship between regression models and the
distributions found in this study.

4. Conclusions
Using the BIC we were able to show that some features known
to be correlates of prominence are better modeled by two Gaus-
sians rather than one, that features have very different BIC score
distributions, and that the optimal point to partition a feature
varies depending on the feature. From our results we can con-
clude that listeners vary in their sensitivity to different cues to
prominence or that the prominence feature is gradient or some
combination of these two. Further work conducted on individ-
ual speakers and listeners may shed more light on this situation.

5. Acknowledgements
This study is supported by NSF IIS-0703624 to Cole and
Hasegawa-Johnson. For their varied contributions, we would
like to thank the members of the Illinois Prosody-ASR research
group.

6. References
[1] Kochanski, G., Grabe, E., Coleman, J. and Rosner., B., “Loudness

predicts prominence: Fundamental frequency lends little”, The
Journal of the Acoustical Society of America, vol 118, 2005.

[2] Ladd, D.R., “Intonational phonology”, Cambridge University
Press, 2008.

[3] Calhoun, S., “Information structure and the prosodic structure of
English”, University of Edinburgh, 2006.

[4] Wagner, P., “Great expectations–Introspective vs. perceptual
prominence ratings and their acoustic correlates”, In Ninth Eu-
ropean Conference on Speech Communication and Technology,
ISCA, 2005.

[5] Mo, Y., Cole, J. and Hasegawa-Johnson, J., “How do ordinary
listeners perceive prosodic prominence? Syntagmatic vs. paradig-
matic comparison”, Poster presented at the 157th Meeting of the
Acoustical Society of America, Portland, Oregon, 2009. Colum-
bus, OH: Department of Psychology, Ohio State University, 2007.
Retrieved March 15, 2006, from www.buckeyecorpus.osu.edu.

[6] Cole, J., Mo, Y. and Hasegawa-Johnson, M., “Signal-based and
expectation-based factors in the perception of prosodic promi-
nence”, Laboratory Phonology, 1, 425452, 2010.

[7] Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W.,
Hume, E. and et al., “Buckeye corpus of conversational speech
(2nd release)”.

[8] Mo, Y., Cole, J. and Lee, E.K., “Naive listeners prominence and
boundary perception”, Proc. Speech Prosody, Campinas, Brazil,
735–738, 2008.

[9] Arnold, J.E., Kam, C. L. H., Tanenhaus, M.K. and Arnold, J., “If
you say thee uh-you’re describing something hard: The on-line at-
tribution of disfluency during reference comprehension”, Journal
of Experimental Psychology: Learning, Memory, and Cognition,
vol 33, 5, 914-930, 2007.

[10] Moschou, V., Kotti, M., Benetos, E. and Kotropoulos, C., “Sys-
tematic comparison of BIC-based speaker segmentation systems”,
IEEE Workshop on Multimodal and Multimedia Signal Process-
ing, 2007.

View publication statsView publication stats


