Chapter 13

Trees

This chapter covers trees and induction on trees.

13.1 Why trees?

Trees are the central structure for storing and organizing data in computer
science. Examples of trees include

e Trees which show the organization of real-world data: family/geneaology
trees, taxonomies (e.g. animal subspecies, species, genera, families)

e Data structures for efficiently storing and retrieving data. The basic
idea is the same one we saw for binary search within an array: sort the
data, so that you can repeatedly cut your search area in half.

e Parse trees, which show the structure of a piece of (for example) com-
puter program, so that the compiler can correctly produce the corre-
sponding machine code.

e Decision trees, which classify data by asking a series of questions. Each
tree node contains a question, whose answer directs you to one of the
node’s children.

For example, here’s a parse tree for the arithmetic expression a*c+bx*d.

146

CHAPTER 13. TREES 147

Computer programs that try to understand natural language use parse
trees to represent the structure of sentences. For example, here are two
possible structures for the phrase “green eggs and ham.” In the first, but
not the second, the ham would be green.

NP

\

NP

green eggs and ham

CHAPTER 13. TREES 148

NP

NP/
/\

green €ges and ham

Here’s a decision tree for figuring out what kind of animal is raiding
your backyard trashcan. Decision trees are often used for engineering clas-
sification problems for which precise numerical models do not exist, such as
transcribing speech waveforms into the basic sounds of a natural language.

Large?

/ *\,
es .
Antlers? Y ings?
no no
yes yes

Moose Bear Crow Tail furry?

JAS

Raccoon Opossum

And here is a tree storing the set of numbers {—2, 8, 10, 32,47, 108, 200, 327,400}

CHAPTER 13. TREES 149

8 / ’ \108
-2/ \10 47/ \327
20()/ \400

13.2 Defining trees

Formally, a tree is a undirected graph with a special node called the root, in
which every node is connected to the root by exactly one path. When a pair
of nodes are neighbors in the graph, the node nearest the root is called the
parent and the other node is its child. By convention, trees are drawn with
the root at the top. Two children of the same parent are known as siblings.

To keep things simple, we will assume that the set of nodes in a tree is
finite. We will also assume that each set of siblings is ordered from left to
right, because this is common in computer science applications.

A leaf node is a node that has no children. A node that does have
children is known as an internal node. The root is an internal node, except
in the special case of a tree that consists of just one node (and no edges).

The nodes of a tree can be organized into levels, based on how many
edges away from the root they are. The root is defined to be level 0. Its
children are level 1. Their children are level 2, and so forth. The height of a
tree is the maximum level of any of its nodes or, equivalently, the maximum
level of any of its leaves or, equivalently, the maximum length of a path from
the root to a leaf.

CHAPTER 13. TREES 150

If you can get from z to g by following zero or more parent links, then g is
an ancestor of x and z is a descendent of g. So z is an ancestor/descendent
of itself. The ancestors/descendents of = other than z itself are its proper
ancestors/descendents. If you pick some random node a in a tree T, the
subtree rooted at a consists of a (its root), all of a’s descendents, and all
the edges linking these nodes.

13.3 me-ary trees

Many applications restrict how many children each node can have. A binary
tree (very common!) allows each node to have at most two children. An m-
ary tree allows each node to have up to m children. Trees with “fat” nodes
with a large bound on the number of children (e.g. 16) occur in some storage
applications.

Important special cases involve trees that are nicely filled out in some
sense. In a full m-ary tree, each node has either zero or m children. Never
an intermediate number. So in a full 3-ary tree, nodes can have zero or three
children, but not one child or two children.

In a complete m-ary tree, all leaves are at the same height. Normally,
we’d be interested only in full and complete m-ary trees, where this means
that the whole bottom level is fully populated with leaves.

For restricted types of trees like this, there are strong relationships be-
tween the numbers of different types of notes. for example:

Claim 46 A full m-ary tree with i internal nodes has mi + 1 nodes total.

To see why this is true, notice that there are two types of nodes: nodes
with a parent and nodes without a parent. A tree has exactly one node with
no parent. We can count the nodes with a parent by taking the number of
parents in the tree (i) and multiplying by the branching factor m.

Therefore, the number of leaves in a full m-ary tree with 7 internal nodes
is(mi+1)—i=(m—1)i+ 1.

CHAPTER 13. TREES 151

13.4 Height vs number of nodes

Suppose that we have a binary tree of height h. How many nodes and how
many leaves does it contain? This clearly can’t be an exact formula, since
some trees are more bushy than others. But we can give useful upper and
lower bounds.

To minimize the node counts, consider a tree of height h that has just
one leaf. It contains h 4+ 1 nodes connected into a straight line by h edges.
So the minimum number of leaves is 1 (regardless of h) and the minimum
number of nodes is h + 1.

The node counts are maximized by a tree which is full and complete. For
these trees, the number of leaves is 2". More generally, the number of nodes
at level L is 2. So the total number of nodes n is 32" _ 2%. The closed form
for this summation is 2"t — 1. So, for full and complete binary trees, the
height is proportional to log, n.

Balanced binary trees are binary trees in which all leaves are at approxi-
mately the same height. The exact definition of “approximately” depends on
the specific algorithms used to keep the tree balanced.! Balanced trees are
more flexible than full and complete binary trees, but they also have height
proportional to log, n, where n is the number of nodes. This means that
data stored in a balanced binary tree can be accessed and modified in log, n
time.

13.5 Context-free grammars

Applications involving languages, both human languages and computer lan-
guages, frequently involve parse trees that show the structure of a sequence
of terminal symbols. A terminal symbol might be a word or a charac-
ter, depending on the application. The terminal symbols are stored in the
leaf nodes of the parse tree. The non-leaf nodes contains symbols that help
indicate the structure of the sentence.

For example, the following tree shows one structure for the sentence:

1See textbooks on data structures and algorithms for further information.

CHAPTER 13. TREES 152

a*c+ bxd. This structure assumes you intend the multiplication to be done
first, before the addition, i.e. (a*c)+ (b*d). The tree uses eight symbols:
E, V,a, b, c d, +, *.

This sort of labelled tree can be conveniently specified by a context-free
grammar. A context-free grammar is a set of rules which specify what sorts
of children are possible for a parent node with each type of label. The lefthand
side of each rule gives the symbol on the parent node and the righthand side
shows one possible pattern for the symbols on its children. If all the nodes of
a tree T have children matching the rules of some grammar G, we say that
the tree T and the terminal sequence stored in its leaves are generated
by G.

For example, the following grammar contains four rules for an E node.
The first rule allows an E node to have three children, the leftmost one
labelled F/, the middle one labelled + and the right one labelled V. According
to these rules, a node labelled V' can only have one child, labelled either a,
b, ¢, or d. The tree shown above follows these grammar rules.

CHAPTER 13. TREES 153

E+V
ExV
V+V
VxV

S Q2

<~ < < <& & H o
R A

QU

If a grammar contains several patterns for the children of a certain node
label, we can pack them onto one line using a vertical bar to separate the
options. E.g. we can write this grammar more compactly as

E = E+V|ExV|V4+V|V*V
V = al|blcl|d

To be completely precise about which trees are allowed by a grammar,
we must specify two details beyond the set of grammar rules. First, we must
give the set of terminals, i.e. symbols that are allowed to appear on the
leaf nodes. Second, we must state which symbols, called start symbols, are
allowed to appear on the root node. For example, for the above grammar,
we might stipulate that the terminals are a, b, ¢, d, +, and * and that the
start symbols are £ and V. Symbols that can appear on the lefthand side of
rules are often written in capital letters.

Consider the following grammar, with start symbol S and terminals a, b,
and c.

S — aSb
S — ¢

CHAPTER 13. TREES 154

S S S S
| VLI VLI VLN
¢ a S b a S b a S b
\ VAN /1N
c a S b a S b
| VLN
c a S b

The sequences of terminals for the above trees are (left to right): ¢, acb,
aacbb, aaacbbb. The sequences from this grammar always have a c¢ in the
middle, with some number of a’s before it and the same number of b’s after
it.

Notice that the left-to-right order of nodes in the tree must match the
order in the grammar rules. So, for example, the following tree doesn’t match
the above grammar.

/
b

N

a

o — U — N

Notice also that we didn’t allow S to be a terminal. If we added S to the
set of terminals, our grammar would also allow the following trees:

CHAPTER 13. TREES 155

S S S S
VLI VLR VLN
a S b a S b a S b
/N /N
a S b a S b
VLN
a S b

Sometimes it is helpful to use relatively few symbols, so as to concentrate
on the possible shapes for the parse tree. Consider, for example, noun com-
pounds such as “dump truck driver” or “wood salad tongs”. Rather than
getting into the specifics of the words involved, we might represent each noun
with the symbol N. A noun compound structure can look like any binary
tree, so it would have the following grammar, where N is both a start and a
terminal symbol

N — N|NN

Here are a number of trees generated by these rules:

N N N
RN RN
N N N N
/\ /\
N N N N

CHAPTER 13. TREES 156

The bottom left tree shows the structure for “dump truck driver” and the
bottom middle the structure of “wood salad tongs”.

In some applications, it’s convenient to have a branch of the parse tree
which generates nothing in the terminal sequence. This is done by having a
rule whose righthand side is ¢, the standard symbol for an empty string. For
example, here is a grossly-oversimplified grammar of an English sentence,
with start symbol S and terminals: coyotes, rabbits, carrots, eat, kill, wash,
the, all, some, and e.

S —- NP VP
vP — V NP |V NP NP
NP — Det N
N — coyotes | rabbits | carrots
V. — eat| kill | wash
Det — €| the|all | some

This will generate terminal sequences such as “All coyotes eat some rab-
bits.” Every noun phrase (NP) is required to have a determiner (Det), but
this determiner can expand into a word that’s invisible in the terminal se-
quence. So we can also generate sequences like “Coyotes eat carrots.”

CHAPTER 13. TREES 157

NP/ S \VP

/N RN

Det N \Y NP

€ coyotes eat € carrots

It is possible? to revise this grammar so that it generates this sentence
without using e. However, some theories of the meaning of natural language
sentences make a distinction between items which are completely missing
and items which are present in the underlying structure but missing in the
superficial structure. In this case, one might claim that the above sentence
has a determiner which is understood to be “all.”

13.6 Recursion trees

One nice application for trees is visualizing the behavior of certain recur-
sive definitions, especially those used to describe algorithm behavior. For
example, consider the following definition, where ¢ is some constant.

S(1) = ¢
S(n) = 28(n/2)+n, V¥n>2 (napower of 2)

We can draw a picture of this definition using a “recursion tree”. The top
node in the tree represents S(n) and contains everything in the formula for
S(n) except the recursive calls to S. The two nodes below it represent
two copies of the computation of S(n/2). Again, the value in each node

2Except when the grammar can generate a terminal sequence that contains only invis-
ible € symbols.

CHAPTER 13. TREES 158

contains the non-recursive part of the formula for computing S(n/2). The
value of S(n) is then the sum of the values in all the nodes in the recursion
tree.

e N

n/4 n/4
/ N\ / N\ / N\ /N

n/2/ \n/2
N ~
n/4 n/4

To sum everything in the tree, we need to ask:

e How high is this tree, i.e. how many levels do we need to expand before
we hit the base case n =17

e For each level of the tree, what is the sum of the values in all nodes at
that level?

e How many leaf nodes are there?

In this example, the tree has height logn, i.e. there are logn non-leaf
levels. At each level of the tree, the node values sum to n. So the sum for all
non-leaf nodes is nlogn. There are n leaf nodes, each of which contributes ¢
to the sum. So the sum of everything in the tree is nlogn + cn, which is the
same closed form we found for this recursive definition in Section 12.3.

Recursion trees are particularly handy when you only need an approx-
imate description of the closed form, e.g. is its leading term quadratic or
cubic?

CHAPTER 13. TREES 159

13.7 Another recursion tree example

Now, let’s suppose that we have the following definition, where ¢ is some
constant.

~J
—
—_
S—
|
@)

P(n) = 2P(n/2)+n* Vn>2 (napower of 2)

Its recursion tree is

The height of the tree is again logn. The sums of all nodes at the top

level is n?. The next level down sums to n?/2. And then we have sums:

n?/4, n?/8, n?/16, and so forth. So the sum of all nodes at level k is n’ .

The lowest non-leaf nodes are at level logn — 1. So the sum of all the
non-leaf nodes in the tree is

logn—1 logn—1

1 1
_ E 2 .2 E
k=0 k=0
2

200 T\ — n2(9 _
= n (2 210gn—1) n (2 logn

2
):n2(2—ﬁ):2n2—2n

Adding cn to cover the leaf nodes, our final closed form is 2n? + (¢ — 2)n.

CHAPTER 13. TREES 160

13.8 Tree induction

When doing induction on trees, we divide the tree up at the top. That is, we
view a tree as consisting of a root node plus some number of subtrees rooted
at its children. The induction variable is typically the height of the tree.
The child subtrees have height less than that of the parent tree. So, in the
inductive step, we’ll be assuming that the claim is true for these shorter child
subtrees and showing that it’s true for the taller tree that contains them.

For example, we claimed above that

Claim 47 Let T be a binary tree, with height h and n nodes. Then n <
2h+1 —1.

Proof by induction on h, where h is the height of the tree.

Base: The base case is a tree consisting of a single node with
no edges. It has h = 0 and n = 1. Then we work out that
il 1 =21 —1=1=n.

Induction: Suppose that the claim is true for all binary trees of
height < h. Let T" be a binary tree of height h (h > 0).

Case 1: T consists of a root plus one subtree X. X has height
h — 1. So X contains at most 2" — 1 nodes. T only contains one
more node (its root), so this means 7" contains at most 2" nodes,
which is less than 2"+ — 1.

T
\

/A

Case 2: T consists of a root plus two subtrees X and Y. X and
Y have heights p and ¢, both of which have to be less than h,
i.e. <h—1. X contains at most 2°*' — 1 nodes and Y contains
at most 297! — 1 nodes, by the inductive hypothesis. But, since
p and ¢ are less than h, this means that X and Y each contain
< 2" — 1 nodes.

CHAPTER 13. TREES 161

T

RN

X Y

So the total number of nodes in 7" is the number of nodes in X
plus the number of nodes in Y plus one (the new root node). This
s < 14+ (27— 1)+ (20—1) < 1+2(2"—1) = 14201 -2 = oh+1]

So the total number of nodes in 7" is < 2"*! — 1, which is what
we needed to show. [

In writing such a proof, it’s tempting to think that if the full tree has
height h, the child subtrees must have height h — 1. This is only true if
the tree is complete. For a tree that isn’t necessarily complete, one of the
subtrees must have height h — 1 but the other subtree(s) might be shorter
than h — 1. So, for induction on trees, it is almost always necessary to use a
strong inductive hypothesis.

In the inductive step, notice that we split up the big tree (T') at its
root, producing two smaller subtrees (X) and (Y'). Some students try to do
induction on trees by grafting stuff onto the bottom of the tree. Do not
do this. There are many claims, especially in later classes, for which this
grafting approach will not work and it is essential to divide at the root.

13.9 Heap example

In practical applications, the nodes of a tree are often used to store data.
Algorithm designers often need to prove claims about how this data is ar-
ranged in the tree. For example, suppose we store numbers in the nodes of a
full binary tree. The numbers obey the heap property if, for every node X in
the tree, the value in X is at least as big as the value in each of X’s children.
For example:

CHAPTER 13. TREES 162

32

/\

VANEEWAN

Notice that the values at one level aren’t uniformly bigger than the values
at the next lower level. For example, 18 in the bottom level is larger than
12 on the middle level. But values never decrease as you move along a path
from a leaf up to the root.

Trees with the heap property are convenient for applications where you
have to maintain a list of people or tasks with associated priorities. It’s easy
to retrieve the person or task with top priority: it lives in the root. And it’s
easy to restore the heap property if you add or remove a person or task.

I claim that:

Claim 48 If a tree has the heap property, then the value in the root of the
tree 1s at least as large as the value in any node of the tree.

To keep the proof simple, let’s restrict our attention to full binary trees:

Claim 49 If a full binary tree has the heap property, then the value in the
root of the tree is at least as large as the value in any node of the tree.

Let’s let v(a) be the value at node a and let’s use the recursive structure
of trees to do our proof.

Proof by induction on the tree height h.

CHAPTER 13. TREES 163

Base: h = 0. A tree of height zero contains only one node, so
obviously the largest value in the tree lives in the root!

Induction: Suppose that the claim is true for all full binary trees
of height < h. Let T be a tree of height h (h > 0) which has the
heap property. Since T is a full binary tree, its root r has two
children p and ¢. Suppose that X is the subtree rooted at p and
Y is the subtree rooted at q.

Both X and Y have height < h. Moreover, notice that X and Y
must have the heap property, because they are subtrees of T" and
the heap property is a purely local constraint on node values.

Suppose that z is any node of T'. We need to show that v(r) >
v(x). There are three cases:

Case 1: z = r. This is obvious.

Case 2: x is any node in the subtree X. Since X has the heap
property and height < h, v(p) > v(x) by the inductive hypothesis.
But we know that v(r) > v(p) because T has the heap property.
So v(r) > v(z).

Case 3: x is any node in the subtree Y. Similar to case 2.

So, for any node z in T', v(r) > v(z).O0

13.10 Proof using grammar trees

Consider the following grammar G, with start symbol S and terminals a and
b. 1 claim that all trees generated by G have the same number of nodes with
label a as with label b.

S — ab
S — SS
S — aSh

We can prove this by induction as follows:

CHAPTER 13. TREES 164

Proof by induction on the tree height h.

Base: Notice that trees from this grammar always have height at
least 1. The only way to produce a tree of height 1 is from the
first rule, which generates exactly one a node and one b node.

Induction: Suppose that the claim is true for all trees of height
< k, where k > 1. Consider a tree T" of height k. The root must
be labelled S and the grammar rules give us three possibilities
for what the root’s children look like:

Case 1: The root’s children are labelled a and b. This is just the
base case.

Case 2: The root’s children are both labelled S. The subtrees
rooted at these children have height < k. So, by the inductive
hypothesis, each subtree has equal numbers of a and b nodes. Say
that the left tree has m of each type and the right tree has n of
each type. Then the whole tree has m + n nodes of each type.

Case 3: The root has three children, labelled a, S, and b. Since
the subtree rooted at the middle child has height < k, it has equal
numbers of a and b nodes by the inductive hypothesis. Suppose
it has m nodes of each type. Then the whole tree has m+ 1 nodes
of each type.

In all three cases, the whole tree T" has equal numbers of a and b
nodes.

13.11 Variation in terminology

There are actually two sorts of trees in the mathematical world. This chapter
describes the kind of trees most commonly used in computer science, which
are formally “rooted trees” with a left-to-right order. In graph theory, the
term “tree” typically refers to “free trees,” which are connected acyclic graphs
with no distinguished root node and no clear up/down or left-right directions.
We will see free trees later, when analyzing planar graphs. Variations on these
two types of trees also occur. For example, some data structures applications
use trees that are almost like ours, except that a single child node must be
designated as a “left” or “right” child.

CHAPTER 13. TREES 165

Infinite trees occur occasionally in computer science applications. They
are an obvious generalization of the finite trees discussed here.

Tree terminology varies a lot, apparently because trees are used for a wide
range of applications with very diverse needs. In particular, some authors use
the term “complete binary tree” to refer to a tree in which only the leftmost
part of the bottom level is filled in. The term “perfect” is then used for a
tree whose bottom level is entirely filled. Some authors don’t allow a node
to be an ancestor or descendent of itself. A few authors don’t consider the
root node to be a leaf.

Many superficial details of context-free grammar notation change with
the application. For example, the BNF notation used in programming lan-
guage specifications looks different at first glance because, for example, the
grammar symbols are whole words surrounded by angle brackets.

Conventional presentations of context-free grammars are restricted so
that terminals can’t occur on the lefthand side of rules and there is a single
start symbol. The broader definitions here allow us to capture the full range
of examples floating around practical applications, without changing what
sets of terminal sequences can be generated by these grammars.

