
Chapter 19

State Diagrams

In this chapter, we’ll see state diagrams, an example of a different way to use
directed graphs.

19.1 Introduction

State diagrams are a type of directed graph, in which the graph nodes rep-
resent states and labels on the graph edges represent actions. For example,
here is a state diagram representing the life cycle of a chicken:

chicken

egg

chick

omelet

hatch

grow

lay
cook

The label on the edge from state A to state B indicates what action
happens as the system moves from state A to state B. In many applications,
all the transitions involve one basic type of action, such as reading a character

212



CHAPTER 19. STATE DIAGRAMS 213

or going though a doorway. In that case, the diagram might simply indicate
the details of this action. For example, the following diagram for a multi-
room computer game shows only the direction of motion on each edge.

entry

dining rm

hall study barn ferry

cellar

northwest south

east
east

west

east

west

east

down

down
up

east

Walks (and therefore paths and cycles) in state diagrams must follow the
arrow directions. So, for example, there is no path from the ferry to the
study. Second, an action can result in no change of state, e.g. attempting
to go east from the cellar. Finally, two different actions may get you to the
same new state, e.g. going either west or north from the hall gets you to the
dining room.

Remember that the full specification of a walk in a graph contains both
a sequence of nodes and a sequence of edges. For state diagrams, these
correspond to a sequence of states and a sequence of actions. It’s often
important to include both sequences, both to avoid ambiguity and because
the states and actions may be important to the end user. For example, for
one walk from the hall to the barn, the full state and action sequences look
like:

states: hall dining room hall cellar barn
actions: west south down up



CHAPTER 19. STATE DIAGRAMS 214

19.2 Wolf-goat-cabbage puzzle

State diagrams are often used to model puzzles or games. For example, one
famous puzzle involves a farmer taking a wolf, a goat, and a cabbage to
market. To do this, he must cross from the east to the west side of a river
using a boat that can only carry him plus one of his three possessions. He
cannot leave the wolf and goat together unsupervised, nor the goat and the
cabbage, because one will eat the other.

We can represent each state of this system by listing the objects that are
on the east bank: w is the wolf, g is the goat, c is the cabbage, and b is the
boat. States like wc and wgb are legal, but wg would not be a legal state.
The diagram of legal states then looks as follows:

wgcb wc wcb

w

c

wgb

cgb

g gb ∅

In this diagram, actions aren’t marked on the edges: you’re left to infer
the action from the change in state. The start state (wgcb) where the system
begins is marked by showing an arrow leading into it. The end state (∅) where
nothing is left on the east bank is marked with a double ring.

In this diagram, it is possible for a (directed) walk to loop back on itself,
repeating states. So there are two shortest solutions to this puzzle, but also
an infinite number of other solutions that involve undoing and then redoing
some piece of work.



CHAPTER 19. STATE DIAGRAMS 215

19.3 Phone lattices

Another standard application for state diagrams is in modelling pronuncia-
tions of words for speech recognition. In these diagrams, known as phone

lattices, each edge represents the action of reading a single sound (a phone)
from the input speech stream. To make our examples easy to read, we’ll
pretend that English is spelled phonetically, i.e. each letter of English rep-
resents exactly one sound/phone.1 For example, we could model the set of
words {chat, chop, chip} using the diagram:

1 2 3 4

5

6

7

c h
a

t

o
i

p

As in the wolf-goat-cabbage puzzle, we have a clearly defined start state
(state 1, marked with an incoming arrow). This time there are two end states
(6 and 7) marked with double rings. It’s conventional that there is only one
start state but there may be several end states.

Another phone lattice might represent the set of words {cat, cot, cab, cob}.

1 8 9 10
c

a

o

t

b

We can combine these two phone lattices into one large diagram, repre-
senting the union of these two sets of words:

1This is, of course, totally wrong. But the essential ideas stay the same when you

switch to a phonetic spelling of English.



CHAPTER 19. STATE DIAGRAMS 216

1

2 3 4

5

6

7

8 9 10
c

a

o

t

b

c

h
a

t

o
i

p

Notice that there are two edges leading from state 1, both marked with
the phone c. This indicates that the user (e.g. a speech understanding
program) has two options for how to handle a c on the input stream. If
this was inconvenient for our application, it could be eliminated by merging
states 2 and 8.

Occasionally, it’s useful for a phone lattice to contain a loop. E.g. peo-
ple often drag out the pronunciation of the word “um.” So the following
represents all words of the form uu∗m, i.e. um, uum, uuuuuum, etc.

1 2 3

u

u m

Many state diagrams are passive representations of a set of possibilities.
For example, a room layout for a computer game merely shows what walks are
possible; the player makes the decisions about which walk to take. Phone
lattices are often used in a more active manner, as a very simple sort of
computer called a finite automaton. The automaton reads an input sequence
of characters, following the edges in the phone lattice. At the end of the
input, it reports whether it has or hasn’t successfully reached an end state.



CHAPTER 19. STATE DIAGRAMS 217

19.4 Representing functions

To understand how state diagrams might be represented mathematically
and/or stored in a computer, let’s first look in more detail at how func-
tions are represented. A function f : A → B associates each input value
from A with an output value from B. So we can represent f mathematically
as a set of input/output pairs (x, y), where x comes from A and y comes from
B. For example, one particular function from {a, b, c} to {1, 2, 3, 4} might be
represented as

{(a, 4), (b, 1), (c, 4)}

In a computer, this information might be stored as a linked list of pairs.
Each pair might be a short list, or an object or structure. However, finding
a pair in such a list requires time proportional to the length of the list. This
can be very slow if the list is long i.e. if the domain of the function is large.

Another option is to convert input values to small integers. For example,
in C, lowercase integer values (as in the set A above) can be converted to small
integers by subtracting 97 (the ASCII code for a). We can then store the
function’s input/output pairs using an array. Each array position represents
an input value. Each array cell contains the corresponding output value.

19.5 Transition functions

Formally, we can define a state diagram to consist of a set of states S, a set of
actions A, and a transition function δ that maps out the edges of the graph,
i.e. shows how actions result in state changes. Each edge of the state diagram
shows what happens when you are in a particular state s and execute some
action a, i.e. which new state(s) could you be in.

So an input to δ is a pair (s, a) of a state and an action. Each output of
δ is a set of states. So the type signature of δ looks like δ : S × A → P(S).

For many input pairs, δ produces a set containing a single state. So why
does δ produce a set of states rather than a single state? This is for two
reasons. First, in some state diagrams, it might not be possible to execute



CHAPTER 19. STATE DIAGRAMS 218

certain actions from certain states, e.g. you can’t go up from the study in
our room layout example. δ returns ∅ in such cases. Second, as we saw in
the phone lattice example, it is sometimes convenient to allow the user or the
computer system several choices. In this case, δ returns a set of possibilities
for the new state.

The hard part of implementing state diagrams in a computer program
is storing the transition function. We could build a 2D array, whose cells
represent all the pairs (s, a). Each cell would then contain a list of output
states. This wouldn’t be very efficient, however, because state diagrams tend
to be sparse: most state/action pairs don’t produce any new state.

One better approach is to build a 1D array of states. The cell for each
state contains a list of actions possible from that state, together with the
new states for each action. For example, in our final phone lattice, the
entry for state 1 would be ((c, (2, 8))) and the entry for state 3 would be
((o, (5)), (i, (5)), (a, (4))). This adjacency list style of storage is much more
compact, because we are no longer wasting space representing the large num-
ber of impossible actions.

Another approach is to build a function, called a hash function that maps
each state/action pair to a small integer. We then allocate a 1D array with
one position for each state/action pair. Each array cell then contains a list
of new states for this state/action pair. The details of hash functions are
beyond the scope of this class. However, modern programming languages
often include built-in hash table or dictionary objects that handle the details
for you.

19.6 Shared states

Suppose that each word in our dictionary had its own phone lattice, and
we then merge these individual lattices to form lattices representing sets of
words. We might get a lattice like the following one, which represents the
set of words {cop, cap, cops, caps}.



CHAPTER 19. STATE DIAGRAMS 219

1 5 6 7 8

2 3 4

9 10 11 12

13 14 15

c a p s
c

a p

c
o p sc

o p

Although this lattice encodes the right set of words, it uses a lot more
states than necessary. We can represent the same information using the
following, much more compact, phone lattice.

1 2 3 4 5
c

a

o
p s

State merger is even more important when states are generated dynam-
ically. For example, suppose that we are trying to find an optimal strategy
for playing a game like tic-tac-toe. Blindly enumerating sequences of moves
might create state diagrams such as:

X

X

O

X

X O

X O

X

X O

X

X O

X O

X O

X O

Searching through the same sequence of moves twice wastes time as well
as space. If we build an index of states we’ve already generated, we can detect
when we get to the same state a second time. We can then use the results
of our previous work, rather than repeating it. This trick, called dynamic



CHAPTER 19. STATE DIAGRAMS 220

programming, can significantly improve the running time of algorithms.

X

X

O

X

X O

X O

X

X O

X O

We can also use state diagrams to model what happens when computer
programs run. Consider the following piece of code

cyclic()

y = 0

x = 0

while (y < 100)

x = remainder(x+1,4)

y = 2x

We can represent the state of this machine by giving the values of x and y.
We can then draw its state diagram as shown below. By recognizing that we
return to the same state after four iterations, we not only keep the diagram
compact but also capture the fact that the code goes into an infinite loop.

x=0,y=0 x=1,y=2 x=2,y=4 x=3,y=6



CHAPTER 19. STATE DIAGRAMS 221

19.7 Counting states

The size of state diagrams varies dramatically with the application. For
example, the wolf-goat-cabbage problem has only 24 = 16 possible states,
because we have two choices for the position of each of the four key objects
(wolf, goat, cabbage, boat). Of these, six aren’t legal because they leave a
hungry animal next to its food with the boat on the other side of the river.
For this application, we have no trouble constructing the full state diagram.

Many applications, however, generate quite big state diagrams. For ex-
ample, a current speech understanding system might need to store tens of
thousands of words and millions of short phrases. This amount of data can
be packed into computer memory only by using high-powered storage and
compression tricks.

Eventually, the number of states becomes large enough that it simply
isn’t possible to store them explicitly. For example, the board game Go is
played on a 19 by 19 grid of positions. Each position can be empty, filled with
a black stone, or filled with a white stone. So, to a first approximation, we
have 3361 possible game positions. Some of these are forbidden by the rules
of the game, but not enough to make the size of the state space tractable.

Some games and theoretical models of computation use an unbounded
amount of memory, so that their state space becomes infinite. For example,
Conway’s “Game of Life” runs on an 2D grid of cells, in which each cell has
8 neighbors. The game starts with an initial configuration, in which some
set of cells is marked as live, and the rest are marked as dead. At each time
step, the set of live cells is updated using the rules:

• A live cell stays live if it 2 or 3 neighbors. Otherwise it becomes dead.

• A dead cell with exactly 3 neighbors becomes live.

For some initial configurations, the system goes into a stable state or
oscillates between several configurations. For some configurations (e.g. so-
called “gliders”) the set of live cells moves across the plane. If our viewing
window shifts along with the glider, we can still represent this situation
with only a finite number of states. However, more interestingly, some finite
configurations (so-called “glider guns”) grow without bound as time moves



CHAPTER 19. STATE DIAGRAMS 222

forwards, so that the board includes more and more live cells. For these initial
configurations, a representation of the system definitely requires infinitely
many states.

When a system has an intractably large number of states, whether finite
or infinite, we obviously aren’t going to build its state space explicitly. Anal-
ysis of such systems requires techniques like computing high-level properties
of states, generating states in a smart way, and using heuristics to decide
whether a state is likely to lead to a final solution.

19.8 Variation in notation

State diagrams of various sorts, and constructs very similar to state diagrams,
are used in a wide range of applications. Therefore, there are many different
sets of terminology for equivalent and/or subtly different variations on this
idea. In particular, when a state diagram is viewed as an active device, i.e.
as a type of machine or computer, it is often called a state transition or an
automaton.

Start states are also known as initial states. End states can be called final

states or goal states.

There are two choices for setting up the transition function δ. State
diagrams where the transition function returns a set of states are called non-

deterministic. Those where δ returns a single state are called deterministic.
Deterministic state diagrams are less flexible but easier to implement effi-
ciently.


