
Chapter 5

Sets

So far, we’ve been assuming only a basic understanding of sets. It’s time to
discuss sets systematically, including a useful range of constructions, opera-
tions, notation, and special cases. We’ll also see how to compute the sizes of
sets and prove claims involving sets.

5.1 Sets

Sets are an extremely general concept, defined as follows:

Definition: A set is an unordered collection of objects.

For example, the natural numbers are a set. So are the integers between
3 and 7 (inclusive). So are all the planets in this solar system or all the
programs written by students in CS 225 in the last three years. The objects
in a set can be anything you want.

The items in the set are called its elements or members. We’ve already
seen the notation for this: x ∈ A means that x is a member of the set A.

There’s three basic ways to define a set:

• describe its contents in mathematical English, e.g. “the integers be-
tween 3 and 7, inclusive.”
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• list all its members, e.g. {3, 4, 5, 6, 7}

• use so-called set builder notation, e.g. {x ∈ Z | 3 ≤ x ≤ 7}

Set builder notation has two parts separated with a vertical bar or a
colon. The first part names a variable (in this case x) that ranges over all
objects in the set. The second part gives one or more constraints that these
objects must satisfy, e.g. 3 ≤ x ≤ 7. The type of the variable (integer in
our example) can be specified either before or after the vertical bar. The
separator (| or :) is often read “such that.”

Here’s an example of a set containing an infinite number of objects

• “multiples of 7”

• {. . .− 14,−7, 0, 7, 14, 21, 28, . . .}

• {x ∈ Z | x is a multiple of 7}

We couldn’t list all the elements, so we had to use “. . .”. This is only a
good idea if the pattern will be clear to your reader. If you aren’t sure, use
one of the other methods.

If we wanted to use shorthand for “multiple of”, it might be confusing to
have | used for two different purposes. So it would probably be best to use
the colon variant of set builder notation:

{x ∈ Z : 7 | x}

The notation can be used on sets containing non-numerical objects. For
example, suppose that A = {dog, cat, tree}. Then the set {αs : α ∈ A}
contains the strings dogs, cats, and trees.

5.2 Things to be careful about

A set is an unordered collection. So {1, 2, 3} and {2, 3, 1} are two names for
the same set. Each element occurs only once in a set. Or, alternatively, it
doesn’t matter how many times you write it. So {1, 2, 3} and {1, 2, 3, 2} also
name the same set.
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We’ve seen ordered pairs and triples of numbers, such as (3, 4) and (4, 5, 2).
The general term for an ordered sequence of k numbers is a k-tuple.1 Tuples
are very different from sets, in that the order of values in a tuple matters
and duplicate elements don’t magically collapse. So (1, 2, 2, 3) 6= (1, 2, 3)
and (1, 2, 2, 3) 6= (2, 2, 1, 3). Therefore, make sure to enclose the elements
of a set in curly brackets and carefully distinguish curly brackets (set) from
parentheses (ordered pair).

A more subtle feature of tuples is that a tuple must contain at least two
elements. In formal mathematics, a 1-dimensional value x is just written as
x, not as (x). And there’s no such thing in mathematics as a 0-tuple. So a
tuple is simply a way of grouping two or more values into a single object.

By contrast, a set is like a cardboard box, into which you can put objects.
A kitty is different from a box containing a kitty. Similarly, a set containing
a single object is different from the object by itself. For example, {57} is not
the same as 57. A set can also contain nothing at all, like an empty box.
The set containing nothing is called the empty set or the null set, and has
the shorthand symbol ∅.2

The empty set may seem like a pain in the neck. However, computer
science applications are full of empty lists, strings of zero length, and the
like. It’s the kind of special case that all of you (even the non-theoreticians)
will spend your life having to watch out for.

Both sets and tuples can contain objects of more than one type, e.g.
(cat,Fluffy, 1983) or {a, b, 3, 7}. A set can also contain complex objects,
e.g. {(a, b), (1, 2, 3), 6} is a set containing three objects: an ordered pair, an
ordered triple, and a single number.

5.3 Cardinality, inclusion

If A is a finite set (a set containing only a finite number of objects), then |A|
is the number of (different) objects in A. This is also called the cardinality

1There are latinate terms for longer sequences of numbers, e.g. quadruple, but they

aren’t used much.
2Don’t write the emptyset as {}. Like a spelling mistake, this will make readers think

less of your mathematical skills.



CHAPTER 5. SETS 55

of A. For example, |{a, b, 3}| = 3. And |{a, b, a, 3}| is also 3, because we
count a group of identical objects only once. The notation of cardinality also
extends to sets with infinitely many members (“infinite sets”) such as the
integers, but we won’t get into the details of that right now.

Notice that the notation |A| might mean set cardinality or it might be the
more familiar absolute value. To tell which, figure out what type of object
A is. If it’s a set, the author meant cardinality. If it’s a number, the author
meant absolute value.

If A and B are sets, then A is a subset of B (written A ⊆ B) if every
element of A is also in B. Or, if you want it formally: ∀x, x ∈ A → x ∈ B.
For example, Q ⊆ R, because every member of the rationals is also a member
of the reals.

The notion of subset allows the two sets to be equal. So A ⊆ A is true for
any set A. So ⊆ is like ≤. If you want to force the two sets to be different (i.e.
like <), you must say that A is a proper subset of B, written A ⊂ B. You’ll
occasionally see reversed versions of these symbols to indicate the opposite
relation, e.g. B ⊇ A means the same as A ⊆ B.

5.4 Vacuous truth

If we have a set A, an interesting question is whether the empty set should
be considered a subset of A. To answer this, let’s first back up and look at
one subtlety of mathematical logic.

Consider the following claim:

Claim 26 For all natural numbers n, if 14 + n < 10, then n wood elves will

attack Siebel Center tomorrow.

I claim this is true, a fact which most students find counter-intuitive. In fact,
it wouldn’t be true if n was declared to be an integer.

Notice that this statement has the form ∀n, P (n) → Q(n), where P (n) is
the predicate 14+n < 10. Because n is declared to be a natural number, n is
never negative, so n+ 14 will always be at least 14. So P (n) is always false.
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Therefore, our conventions about the truth values for conditional statements
imply that P (n) → Q(n) is true. This argument works for any choice of n.
So ∀n, P (n) → Q(n) is true.

Because even mathematicians find such statements a bit wierd, they typ-
ically say that such a claim is vacuously true, to emphasize to the reader
that it is only true because of this strange convention about the meaning of
conditionals. Vacuously true statements typically occur when you are trying
to apply a definition or theorem to a special case involving an abnormally
small or simple object, such as the empty set or zero or a graph with no
arrows at all.

In particular, this means that the empty set is a subset of any set A. For
∅ to be a subset of A, the definition of “subset” requires that for every object
x, if x is an element of the empty set, then x is an element of A. But this
if/then statement is considered true because its hypothesis is always false.

5.5 Set operations

Given two sets A and B, the intersection of A and B (A ∩ B) is the set
containing all objects that are in both A and B. In set builder notation:

A ∩B = {S | S ∈ A and S ∈ B}

Let’s set up some sample sets:

• M = {egg, bread,milk}

• P = {milk, egg, flour}

Then M ∩ P is {milk, egg}.

If the intersection of two sets A and B is the empty set, i.e. the two sets
have no elements in common, then A and B are said to be disjoint.

The union of sets A and B (A ∪ B) is the set containing all objects that
are in one (or both) of A and B. So M ∪ P is {milk, egg, bread, flour}.
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The set difference of A and B (A − B) contains all the objects that are
in A but not in B. In this case,

M − P = {bread}

The complement of a set A (A) contains all objects that aren’t in A. For
this to make sense, you need to define your “universal set” (often written
U). U contains all the objects of the sort(s) you are discussing. For example,
in some discussions, U might be all real numbers. In other discussions, U
might contain all complex numbers. We cannot define a single, all-purpose
universal set containing everything you might imagine putting in a set, be-
cause constructing a set that extensive leads to logical paradoxes. So your
definition of U must be specific to your situation and, therefore, you and
your reader need to come to an understanding about what’s in it.

So, if our universe U is all integers, and A contains all the multiples of
3, then A is all the integers whose remainder mod 3 is either 1 or 2. Q

would be the irrational numbers if our universe is all real numbers. If we had
been working with complex numbers, it might be the set of all irrational real
numbers plus all the numbers with an imaginary component.

If A and B are two sets, their Cartesian product (A × B) contains all
ordered pairs (x, y) where x is in A and y is in B. That is

A×B = {(x, y) | x ∈ A and y ∈ B}

For example, if A = {a, b} and B = {1, 2}, then

A×B = {(a, 1), (a, 2), (b, 1), (b, 2)}

B ×A = {(1, a), (2, a), (1, b), (2, b)}

Notice that these two sets aren’t equal: order matters for Cartesian prod-
ucts.

We can generalize this definition to create the Cartesian product of three
or more sets. So, for example, if C = {p, q}, then
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A×B×C == {(a, 1, p), (a, 1, q), (a, 2, p), (a, 2, q), (b, 1, p), (b, 1, q), (b, 2, p), (b, 2, q)}

5.6 Set identities

It’s easy to find (e.g. on the net), long lists of identities showing when two
sequences of set operations yield the same output set. For example:

DeMorgan’s Law: A ∪B = A ∩B

I won’t go through these in detail because they are largely identical to
the identities you saw for logical operations, if you make the following corre-
spondences:

• ∪ is like ∨

• ∩ is like ∧

• A is like ¬P

• ∅ (the empty set) is like F

• U (the universal set) is like T

The two systems aren’t exactly the same. E.g. set theory doesn’t use a
close analog of the → operator. But they are very similar.

5.7 Size of set union

Many applications require that we calculate3 the size of the set created by
applying set operations. These sets are often sets of options for some task.

3Or sometimes just estimate.
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If two sets A and B don’t intersect, then the size of their union is just
the sum of their sizes. That is: |A ∪ B| = |A| + |B|. For example, suppose
that it’s late evening and you want to watch a movie. You have 37 movies
on cable, 57 DVD’s on the shelf, and 12 movies stored in I-tunes. If these
three sets of movies don’t intersect, you have a total of 37 + 57 + 12 = 106
movies.

If your input sets do overlap, then adding up their sizes will double-count
some of the objects. So, to get the right number for the union, we need to
correct for the double-counting. For our movie example, suppose that the
only overlap is that 2 movies are on I-tunes and also on DVD. Then you
would have (37 + 57 + 12)− 2 = 104 movies to choose from.

The formal name for this correction is the “Inclusion-Exclusion Princi-
ple”. Formally, suppose you have two sets A and B. Then

Inclusion-Exclusion Principle: |A ∪ B| = |A|+ |B| − |A ∩B|

We can use this basic 2-set formula to derive the corresponding formula
for three sets A, B, and C:

|A ∪B ∪ C| = |A|+ |B ∪ C| − |A ∩ (B ∪ C)|

= |A|+ |B|+ |C| − |B ∩ C| − |A ∩ (B ∪ C)|

= |A|+ |B|+ |C| − |B ∩ C| − |(A ∩B) ∪ (A ∩ C)|

= |A|+ |B|+ |C| − |B ∩ C| − (|A ∩B|+ |A ∩ C| − |(A ∩ B) ∩ (A ∩ C)|)

= |A|+ |B|+ |C| − |B ∩ C| − |A ∩B| − |A ∩ C|+ |A ∩ B ∩ C|

In addition to the inclusion-exclusion principle, this derivation uses the
distributive law (third step) and the fact that intersection is commutative
and associative (last step).

5.8 Product rule

Now, suppose that we form the Cartesian product of two sets A and B, where
|A| = n and |B| = q. To form an element (x, y) in the product, we have n
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choices for x and q choices for y. So we have nq ways to create an element
of the product. So |A× B| = nq.

In general:

The product rule: if you have p choices for one part of a task,
then q choices for a second part, and your options for the second
part don’t depend on what you chose for the first part, then you
have pq options for the whole task.

This rule generalizes in the obvious way to sequences of several choices:
you multiply the number of options for each choice. For example, suppose
that T-shirts come in 4 colors, 5 sizes, 2 sleeve lengths, and 3 styles of
neckline, there are 4 · 5 · 2 · 3 = 120 total types of shirts.

We could represent a specific T-shirt type as a 4-tuple (c, s, l, n): c is its
color, s is its size, l is its sleeve length, and n is its neckline. E.g. one T-shirt
type is (red, small, long, vee) The set of all possible T-shirt types would then
be a 4-way Cartesian product of the set of all colors, the set of all sizes, the
set of all sleeve lengths, and the set of all necklines.

5.9 Combining these basic rules

These two basic counting rules can be combined to solve more complex practi-
cal counting problems. For example, suppose we have a set S which contains
all 5-digit decimal numbers that start with 2 one’s or end in 2 zeros, where
we don’t allow leading zeros. How large is S, i.e. how many numbers have
this form?

Let T be the set of 5-digit numbers starting in 2 one’s. We know the first
two digits and we have three independent choices (10 options each) for the
last three. So there are 1000 numbers in T .

Let R be the set of 5-digit numbers ending in 2 zeros. We have 9 options
for the first digit, since it can’t be zero. We have 10 options each for the
second and third digits, and the last two are fixed. So we have 900 numbers
in R.
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What’s the size of T ∩ R? Numbers in this set start with 2 one’s and
end with 2 zeros, so the only choice is the middle digit. So it contains 10
numbers. So

|S| = |T |+ |R| − |T ∩R| = 1000 + 900− 10 = 1890

5.10 Proving facts about set inclusion

So far in school, most of your proofs or derivations have involved reason-
ing about equality. Inequalities (e.g. involving numbers) have been much
less common. With sets, the situation is reversed. Proofs typically involve
reasoning about subset relations, even when proving two sets to be equal.
Proofs that rely primarily on a chain of set equalities do occur, but they are
much less common. Even when both approaches are possible, the approach
based on subset relations is often easier to write and debug.

As a first example of a typical set proof, let’s suppose that we the following
two sets and we’d like to prove that A ⊆ B

A = {λ(2, 3) + (1− λ)(7, 4) | λ ∈ [0, 1]}

B = {(x, y) | x, y ∈ R, x ≥ 0, and y ≥ 0}

When presented with a claim like this, you should first take a minute to
verify that the claim really is true. Set B is the upper right quadrant of the
plane. To understand the definition of set A, remember how to multiply a
real number by a vector: a(x, y) = (ax, ay). This definition generates all
points of the form λ(2, 3) + (1− λ)(7, 4) where λ is a real number between 0
and 1. Try putting some sample values of λ into this equation and plotting
them in 2D: what geometrical object is this?4 Make sure you believe that
this object does live in the upper right quadrant.

Now, remember our definition of ⊆: a set A is a subset of a set B if and
only if, for any object x, x ∈ A implies that x ∈ B. So, to prove our claim,
we need to pick a random object x from A and show that it lives in B. So a
starting sketch of our proof might look like:

4Hint: use a pencil and paper. Your plot doesn’t need to be neat to see the pattern.
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Proof: Let sets A and B be defined as above. Let x be an element
of A.

[missing details]

So x is an element of B.

Since x was arbitrarily chosen, we’ve shown that any element of
A is also an element of B. So A is a subset of B.

We can now use the definition of A to extend forward from the hypotheses
into the missing part. In particular, the definition of A implies that x is a
2D point, so it’s probably helpful to give names to the two coordinates:

Proof: Let sets A and B be defined as above. Let x be an element
of A. Then x = µ(2, 3) + (1 − µ)(7, 4) for some µ ∈ [0, 1]. So
x = (p, q) where p = 2µ+ 7(1− µ) and q = 3µ+ 4(1− µ)

[missing details]

So x is an element of B.

Since x was arbitrarily chosen, we’ve shown that any element of
A is also an element of B. So A is a subset of B.

Notice that the variable λ in the definition of A is local to the definition
of A. So when we use this definition to spell out the properties of our element
x, we need to introduce a new variable. I’ve used a fresh variable name µ to
emphasize that this is a new variable.

At this point, it’s worth looking at the end part of the proof. If x = (p, q)
and we’re trying to show that x is in B, then this translates into showing
that p and q are both non-negative. So we can expand the end of the proof
backwards, narrowing the missing part even further:

Proof: Let sets A and B be defined as above. Let x be an element
of A. Then x = µ(2, 3) + (1 − µ)(7, 4) for some µ ∈ [0, 1]. So
x = (p, q) where p = 2µ+ 7(1− µ) and q = 3µ+ 4(1− µ)

[missing details]

So p ≥ 0 and q ≥ 0. This means that x = (p, q) is an element of
B.
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Since x was arbitrarily chosen, we’ve shown that any element of
A is also an element of B. So A is a subset of B.

Now we have a straightforward algebra problem: get from the complex
equations defining p and q to the fact that both are non-negative. Working
out the details of that algebra gives us the final proof:

Proof: Let sets A and B be defined as above. Let x be an element
of A. Then x = µ(2, 3) + (1 − µ)(7, 4) for some µ ∈ [0, 1]. So
x = (p, q) where p = 2µ+ 7(1− µ) and q = 3µ+ 4(1− µ)

Simplifying these equations, we get that p = 2µ+7−7µ = 7−5µ
and q = 3µ+4−4µ = 4−µ Since µ is in the interval [0, 1], µ ≤ 1.
So 7− 5µ and 4− µ are both ≥ 0.

So p ≥ 0 and q ≥ 0. This means that x = (p, q) is an element of
B.

Since x was arbitrarily chosen, we’ve shown that any element of
A is also an element of B. So A is a subset of B.

The last paragraph in this proof is actually is optional. When you first
start, it’s a useful recap because you might be a bit fuzzy about what you
needed to prove. Experienced folks often omit it, depending on the reader
to understand the basic outline of a subset inclusion proof. But you will still
see it occasionally at the end of a very long (e.g. multi-page) proof, where
the reader might have been so buried in the details that they’ve lost track of
the overall goals of the proof.

5.11 An abstract example

Now, let’s try to do a similar proof, but for a claim involving generic sets
rather than specific sets.

Claim 27 For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.
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This property is called “transitivity,” just like similar properties for (say)
≤ on the real numbers. Both ⊆ and ≤ are examples of a general type of
object called a partial order, for which transitivity is a key defining property.

Let’s start our proof by gathering up all the given information in the
hypothesis of the claim:

Proof: Let A, B, and C be sets and suppose that A ⊆ B and
B ⊆ C.

Our ultimate goal is to show that A ⊆ C. This is an if/then statement:
for any x, if x ∈ A, then x ∈ C. So we need to pick a representative x

and assume the hypothesis is true, then show the conclusion. So our proof
continues:

Let x be an element of A. Since A ⊆ B and x ∈ A, then x ∈ B

(definition of subset). Similarly, since x ∈ B and B ⊆ C, x ∈ C.
So for any x, if x ∈ A, then x ∈ C. So A ⊆ C (definition of
subset again). �

5.12 An example with products

Here’s another claim, involving Cartesian products:

Claim 28 For any sets A, B, and C, if A × B ⊆ A × C and A 6= ∅, then
B ⊆ C.

Notice that this claim fails if A = ∅. For example, ∅×{1, 2, 3} is a subset
of ∅ × {a, b}, because both of these sets are empty. However {1, 2, 3} is not
a subset of {a, b}.

This is like dividing both sides of an algebraic equation by a non-zero
number: if xy ≤ xz and x 6= 0 then y ≤ z. This doesn’t work we allow x

to be zero. Set operations don’t always work exactly like operations on real
numbers, but the parallelism is strong enough to suggest special cases that
ought to be investigated.
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A general property of proofs is that the proof should use all the informa-
tion in the hypothesis of the claim. If that’s not the case, either the proof
has a bug (e.g. on a homework assignment) or the claim could be revised to
make it more interesting (e.g. when doing a research problem, or a buggy
homework problem). Either way, there’s an important issue to deal with.
So, in this case, we need to make sure that our proof does use the fact that
A 6= ∅.

Here’s a draft proof:

Proof draft: Suppose that A, B, and C are sets and suppose that
A× B ⊆ A× C and A 6= ∅. We need to show that B ⊆ C.

So let’s choose some x ∈ B. . . .

The main fact we’ve been given is that A × B ⊆ A × C. To use it, we
need an element of A × B. Right now, we only have an element of B. We
need to find an element of A to pair it with. To do this, we reach blindly
into A, pull out some random element, and give it a name. But we have to
be careful here: what if A doesn’t contain any elements? So we have to use
the assumption that A 6= ∅.

Proof: Suppose that A, B, and C are sets and suppose that
A× B ⊆ A× C and A 6= ∅. We need to show that B ⊆ C.

So let’s choose some x ∈ B. Since A 6= ∅, we can choose an
element t from A. Then (t, x) ∈ A × B by the definition of
Cartesian product.

Since (t, x) ∈ A × B and A × B ⊆ A × C, we must have that
(t, x) ∈ A × C (by the definition of subset). But then (again by
the definition of Cartesian product) x ∈ C.

So we’ve shown that if x ∈ B, then x ∈ C. So B ⊆ C, which is
what we needed to show.

5.13 A proof using sets and contrapositive

Here’s a claim about sets that’s less than obvious:
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Claim 29 For any sets A and B, if (A − B) ∪ (B − A) = A ∪ B then

A ∩ B = ∅.

Notice that the conclusion A ∩ B = ∅ claims that something does not
exist (i.e. an object that’s in both A and B). So this is a good place to apply
proof by contrapositive.

Proof: Let’s prove the contrapositive. That is, we’ll prove that if
A ∩B 6= ∅, then (A−B) ∪ (B − A) 6= A ∪ B.

So, let A and B be sets and suppose that A ∩ B 6= ∅. Since
A∩B 6= ∅, we can choose an element from A∩B. Let’s call it x.

Since x is in A ∩ B, x is in both A and B. So x is in A ∪ B.

However, since x is in B, x is not in A−B. Similarly, since x is in
A, x is not in B−A. So x is not a member of (A−B)∪ (B−A).
This means that (A−B) ∪ (B −A) and A ∪B cannot be equal,
because x is in the second set but not in the first. �.

5.14 Variation in notation

In mathematical writing, it is quite rare to create tuples that contain other
tuples. In principle, tuples containing tuples are formally different from
longer tuples. E.g. ((a, b), c) is formally a different object from (a, b, c), and
(a, (b, c)) is different from both. However, most mathematical writers treat
this difference as a petty nuisance and view the two objects as interchange-
able.

Linked lists used in computer science behave very differently from math-
ematical tuples. The linked list ((a, b), c) is completely different from the list
(a, b, c) and a linked list can contain a single element or no elements. It is a
bad idea to confuse linked lists and mathatical tuples, even though they are
written with the same notation.


