
Chapter 18

Collections of Sets

So far, most of our sets have contained atomic elements (such as numbers or
strings) or tuples (e.g. pairs of numbers). Sets can also contain other sets.
For example, {Z,Q} is a set containing two infinite sets. {{a, b}, {c}} is a
set containing two finite sets. In this chapter, we’ll see a variety of examples
involving sets that contain other sets. To avoid getting confused, we’ll use
the term collection to refer to a set that contains other sets, and use a script
letter for its variable name.

18.1 Sets containing sets

Sets containing sets arise naturally when an application needs to consider
some or all of the subsets of a base set A . For example, suppose that we
have a set of 6 students:

A = {Ian,Chen,Michelle,Emily, Jose,Anne}

We might divide A up into non-overlapping groups based on what dorm
they live in, to get the collection:

B = {{Ian,Chen, Jose}, {Anne}, {Michelle,Emily}}

201

CHAPTER 18. COLLECTIONS OF SETS 202

We could also construct a set of overlapping groups, each containing stu-
dents who play a common musical instrument (e.g. perhaps Michelle and
Chen both play the oboe). The collection of these groups might look like:

D = {{Ian,Emily, Jose}, {Anne,Chen, Ian}, {Michelle,Chen}, {Ian}}

Or we could try to list all ways that we could choose a 3-person committee
from this set of students, which would be a rather large collection containing
elements such as {Ian,Emily, Jose} and {Ian,Emily,Michelle}.

When a collection like B is the domain of a function, the function maps
an entire subset to an output value. For example, suppose we have a function
f : B → {dorms}. Then f would map each set of students to a dorm. E.g.
f({Michelle,Emily}) = Babcock.

The value of a function on a subset can depend in various ways on what-
ever is in the subset. For example, suppose that we have a collection

D = {{−12, 7, 9, 2}, {2, 3, 7}, {−10,−3, 10, 4}, {1, 2, 3, 6, 8}}

We might have a function g : D → R which maps each subset to some
descriptive statistic. For example, g might map each subset to its mean value.
And then we would have g({−12, 7, 9, 2}) = 1.5 and g({1, 2, 3, 6, 9}) = 4.2.

When manipulating sets of sets, it’s easy to get confused and “lose” a layer
of structure. To avoid this, imagine each set as a box. Then the collection
F = {{a, b}, {c}, {a, p, q}} is a box containing three boxes. One of the inside
boxes contains a and b, the other contains c, and the third contains a, p, and
q. So the cardinality of F is three.

The empty set, like any other set, can be put into another set. So {∅}
is a set containing the empty set. Think of it as a box containing an empty
box. The set {∅, {3, 4}} has two elements: the empty set and the set {3, 4}.

CHAPTER 18. COLLECTIONS OF SETS 203

18.2 Powersets and set-valued functions

If A is a set, the powerset of A (written P(A) is the collection containing all
subsets of A. For example, suppose that A = {1, 2, 3}. Then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Suppose A is finite and contains n elements. When forming a subset, we
have two choices for each element x: include x in the subset or don’t include
it. The choice for each element is independent of the choice we make for the
other elements. So we have 2n ways to form a subset and, thus, the powerset
P(A) contains 2n elements.

Notice that the powerset of A always contains the empty set, regardless
of what’s in A. As a consequence, P(∅) = {∅}.

Powersets often appear as the co-domain of functions which need to return
a set of values rather than just a single value. For example, suppose that we
have the following graph whose set of nodes is V = {a, b, c, d, e, f, g, h}.

e

a

b

c

d

f g h

Now, let’s define the function n so that it takes a node as input and
returns the neighbors of that node. A node might have one neighbor, but
it could have several, and it might have no neighbors. So the outputs of
n can’t be individual nodes. They must be sets of nodes. For example,
n(a) = {b, c, e} and N(f) = ∅. It’s important to be consistent about the
output type of n: it always returns a set. So n(g) = {h}, not n(g) = h.

Formally, the domain of n is V and the co-domain is P(V). So the type
signature of n would be n : V → P(V).

Suppose we have the two graphs shown below, with sets of nodes X =

CHAPTER 18. COLLECTIONS OF SETS 204

{a, b, c, d, e} and Y = {1, 2, 3, 4, 5}. And suppose that we’re trying to find
all the possible isomorphisms between the two graphs. We might want a
function f that retrieves likely corresponding nodes. For example, if p is a
node in X , then f(p) might be the set of nodes in Y with the same degree
as p.

a

b

c

de

5 1

2

3

4

f can’t return a single node, because there might be more than one node
in Y with the same degree. Or, if the two graphs aren’t isomorphic, no
nodes in Y with the same degree. So we’ll have f return a set of nodes. For
example, f(e) = {1, 5} and f(a) = {2}. The co-domain of f will need to be
P(Y). So, to declare f , we’d write f : X → P(Y).

18.3 Partitions

When we divide a base set A into non-overlapping subsets which include
every element of A, the result is called a partition of A. For example,
suppose that A is the set of nodes in the following graph. The partition
{{a, b, c, d}, {e, f, g}, {h, i, j, k}} groups nodes into the same subset if they
belong to the same connected component.

a

b

c

d e f

g

h
i

j

k

Notice that being in the same connected component is an equivalence
relation on the nodes of a graph. In general, each equivalence relation corre-

CHAPTER 18. COLLECTIONS OF SETS 205

sponds to a partition of its base set, and vice versa. Each set in the partition
is exactly one of the equivalence classes of the relation. For example, con-
gruence mod 4 corresponds to the following partition of the integers:

{{0, 4,−4, 8,−8, . . .}, {1, 5,−3, 9,−7, . . .},

{2, 6,−2, 10,−6, . . .}, {3, 7,−1, 11,−5, . . .}}

We could also write this partition as {[0], [1], [2], [3]} since each equivalence
class is a set of numbers.

Collections of subsets don’t always form partitions. For example, consider
the following graph G.

a

b

c

d

f

e

g

Suppose we collect sets of nodes in G that form a cycle. We’ll get the
following set of subsets. This isn’t a partition because some of the subsets
overlap.

{{f, c, d}, {a, b, c, d}, {a, b, c, d, f}, {f, e, g}}

Formally, a partition of a set A is a set of non-empty subsets of A which
cover all the elements of A and which don’t overlap. So, if the subsets in the
partition are A1, A2, . . .An, then they must satisfy three conditions:

1. covers all of A: A1 ∪ A2 ∪ . . . ∪ An = A

2. non-empty: Ai 6= ∅ for all i

3. no overlap: Ai ∩ Aj = ∅ for all i 6= j.

CHAPTER 18. COLLECTIONS OF SETS 206

It’s possible for a partition of an infinite set A to contain infinitely many
subsets. For example, we can partition the integers into subsets each of which
contains integers with the same magnitude:

{{0}, {1,−1}, {2,−2}, {3,−3}, . . .}

We need more general notation to cover the possibility of an infinite
partition. Suppose that C is a partition of A. Then C must satisfy the
following conditions:

1. covers all of A:
⋃

X∈C
X = A

2. non-empty: X 6= ∅ for all X ∈ C

3. no overlap: X ∩ Y = ∅ for all X, Y ∈ C , X 6= Y

The three defining conditions of an equivalence relation (reflexive, sym-
metric, and transitive) were chosen so as to force the equivalence classes
to be a partition. Relations without one of these properties would gener-
ate “equivalence classes” that might be empty, have partial overlaps, and so
forth.

18.4 Combinations

In many applications, we have an n-element set and need to count all subsets
of a particular size k. A subset of size k is called a k-combination. Notice
the difference between a permutation and a combination: we care about the
order of elements in a permutation but not in a combination.

For example, how many ways can I select a 7-card hand from a 60-card
deck of Magic cards (assuming no two cards are identical)?1

One way to analyze this problem is to figure out how many ways we
can select an ordered list of 7 cards, which is P (60, 7). This over-counts the

1Ok, ok, for those of you who actually play Magic, decks do tend to contain identical

land cards. But maybe we are using lots of special lands or perhaps we’ll treat cards with

different artwork as different.

CHAPTER 18. COLLECTIONS OF SETS 207

number of possibilities, so we have to divide by the number of different orders
in which the same 7-cards might appear. That’s just 7!. So our total number
of hands is P (60,7)

7!
This is 60·59·58·57·56·55·54

7·6·5·4·3·2
. Probably not worth simplifying or

multiplying this out unless you really have to. (Get a computer to do it.)

In general, suppose that we have a set S with n elements and we want to
choose an unordered subset of k elements. We have n!

(n−k)!
ways to choose k

elements in some particular order. Since there are k! ways to put each subset
into an order, we need to divide by k! so that we will only count each subset
once. So the general formula for the number of possible subsets is n!

k!(n−k)!
.

The expression n!
k!(n−k)!

is often written C(n, k) or
(

n

k

)

. This is pronounced
“n choose k.” It is also sometimes called a “binomial coefficient,” for reasons
that will become obvious shortly. So the shorthand answer to our question
about magic cards would be

(

60
7

)

.

Notice that
(

n

r

)

is only defined when n ≥ r ≥ 0. What is
(

0
0

)

? This is
0!
0!0!

= 1
1·1

= 1.

18.5 Applying the combinations formula

The combinations formula is often used when we want to select a set of
locations or positions to contain a specific value. For example, recall that a
bit string is a string of 0’s and 1’s. Suppose we want to figure out how many
16-digit bit strings contain exactly 5 zeros. Let’s think of the string as having
16 positions. We need to choose 5 of these to be the positions containing the
zeros. We can how apply the combinations formula: we have

(

16
5

)

ways to
select these 5 positions.

To take a slightly harder example, let’s figure out how many 10-character
strings from the 26-letter ASCII alphabet contain no more than 3 A’s. Such
strings have to contain 0, 1, 2, or 3 A’s. To find the number of strings
containing exactly three A’s, we first pick three of the 10 positions to contain
the A’s. There are

(

10
3

)

ways to do this. Then, we have seven positions to fill
with our choice of any character except A. We have 257 ways to do that. So
our total number of strings with 3 A’s is

(

10
3

)

257.

To get the total number of strings, we do a similar analysis to count

CHAPTER 18. COLLECTIONS OF SETS 208

the strings with 0, 1, and 2 A’s. We then add up the counts for the four
possibilities to get a somewhat messy final answer for the number of strings
with 3 or fewer A’s:

(

10
3

)

257 +
(

10
2

)

258 +
(

10
1

)

259 + 2510

18.6 Combinations with repetition

Suppose I have a set S and I want to select a group of objects of the types
listed in S, but I’m allowed to pick more than one of each type of object.
For example, suppose I want to pick 6 plants for my garden and the set of
available plants is S = {thyme, oregano,mint}. The garden store can supply
as many as I want of any type of plant. I could pick 3 thyme and 3 mint. Or
I could pick 2 thyme, 1 oregano, and 3 mint.

There’s a clever way to count the possibilities here. Let’s draw a picture of
a selection as follows. We’ll group all our thymes together, then our oreganos,
then our mints. Between each pair of groups, we’ll put a cardboard separator
#. So 2 thyme, 1 oregano, and 3 mint looks like

T T # O # M M M

And 3 thyme and 3 mint looks like

T T T ## M M M

But this picture is redundant, since the items before the first separator
are always thymes, the ones between the separators are oreganos, and the
last group are mints. So we can simplify the diagram by using a star for each
object and remembering their types implicitly. Then 2 thyme, 1 oregano,
and 3 mint looks like

** # * # ***

And 3 thyme and 3 mint looks like

CHAPTER 18. COLLECTIONS OF SETS 209

*** ## ***

To count these pictures, we need to count the number of ways to arrange
6 stars and two #’s. That is, we have 8 positions and need to choose 2 to fill

with #’s. In other words,

(

8
2

)

.

In general, suppose we are picking a group of k objects (with possible
duplicates) from a list of n types. Then our picture will contain k stars and
n− 1 #’s. So we have k + n− 1 positions in the picture and need to choose
n − 1 positions to contain the #’s. So the number of possible pictures is
(

k + n− 1
n− 1

)

.

Notice that this is equal to

(

k + n− 1
k

)

because we have an identity

that says so (see above). We could have done our counting by picking a
subset of k positions in the diagram that we would fill with stars (and then
the rest of the positions will get the #’s).

If wanted to pick 20 plants and there were five types available, I would

have

(

24
4

)

=

(

24
20

)

options for how to make my selection.

(

24
4

)

=

24·23·22·21
4·3·2

= 23 · 22 · 21.

18.7 Identities for binomial coefficients

There are a large number of useful identities involving binomial coefficients,
most of which you can look up as you need them. Two really basic ones are
worth memorizing. First, a simple consequence of the definition of

(

n

k

)

is that

(

n

k

)

=

(

n

n− k

)

Pascal’s identity also shows up frequently. It states that

(Pascal’s identity)
(

n+1
k

)

=
(

n

k

)

+
(

n

k−1

)

CHAPTER 18. COLLECTIONS OF SETS 210

This is not hard to prove from the definition of
(

n

k

)

. To remember it, suppose
that S is a set with n+ 1 elements. The lefthand side of the equation is the
number of k-element subsets of S.

Now, fix some element a in S. There are two kinds of k-element subsets:
(1) those that don’t contain a and (2) those that do contain a. The first term
on the righthand side counts the subsets in group (1): all k-element subsets
of S −{a}. The second term on the righthand side counts the k− 1-element
subsets of S − {a}. We then add a to each of these to get the subsets in
group (2).

If we have Pascal’s identity, we can give a recursive definition for the
binomial coefficients, for all natural numbers n and k with k ≤ n.

Base: For any natural number k,
(

n

0

)

=
(

n

n

)

= 1.

Induction:
(

n

k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

, whenever k < n

18.8 Binomial Theorem

Remember that a binomial is a sum of two terms, e.g. (x + y). Binomial
coefficients get their name from the following useful theorem about raising a
binomial to an integer power:

Claim 53 (Binomial Theorem) Let x and y be variables and let n be any
natural number. Then

(x+ y)n =

n
∑

k=0

(

n

k

)

xn−kyk

When we expand the product (x + y)n, each term is the product of n
variables, some x’s and the rest y’s. For example, if n = 5, one term is
yxyyx. So each term is an ordered list of x’s and y’s.

We can think of our large set of terms as partitioned into subsets, each
containing terms with the same number of x’s. For example, the set of terms
with two x’s would be

CHAPTER 18. COLLECTIONS OF SETS 211

[xxyyy] = {xxyyy, xyxyy, xyyxy, xyyyx, yxxyy,

yxyxy, yxyyx, yyxxy, yyxyx, yyyxx}

When we collect terms, the coefficient for each term will be the size of this
set of equivalent terms. E.g. the coefficient for x2y3 is 10, because [xxyyy]
contains 10 elements. To find the coefficient for xn−kyk, we need to count
how many ways we can make a sequence of n variable names that contains
k y’s and n− k x’s. This amounts to picking a subset of k elements from a
set of n positions in the sequence. In other words, there are

(

n

k

)

such terms.

18.9 Variation in notation

We’ve used the notation P(A) for the powerset of A. Another common
notation is 2A.

We’ve used the term “collection” to refer to sets containing other sets. A
collection is just a special type of set, so it’s also ok to just call them sets.

