
Chapter 6

Relations

Mathematical relations are an extremely general framework for specifying
relationships between pairs of objects. This chapter surveys the types of
relations that can be constructed on a single set A and the properties used
to characterize different types of relations.

6.1 Relations

A relation R on a set A is a subset of A×A, i.e. R is a set of ordered pairs
of elements from A. For simplicity, we will assume that the base set A is
always non-empty. If R contains the pair (x, y), we say that x is related to
y, or xRy in shorthand. We’ll write x 6Ry to mean that x is not related to y.

For example, suppose we let A = {2, 3, 4, 5, 6, 7, 8}. We can define a
relation W on A by xWy if and only if x ≤ y ≤ x + 2. Then W contains
pairs like (3, 4) and (4, 6), but not the pairs (6, 4) and (3, 6). Under this
relation, each element of A is related to itself. So W also contains pairs like
(5, 5).

We can draw pictures of relations using directed graphs. We draw a
graph node for each element of A and we draw an arrow joining each pair of
elements that are related. So W looks like:
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In fact, there’s very little formal difference between a relation on a set
A and a directed graph, because graph edges can be represented as ordered
pairs of endpoints. They are two ways of describing the same situation.

We can define another relation S on A by saying that xSy is in S if x ≡ y

(mod 3). Then S would look like:
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Or, suppose that B = {2, 3, 4, 5, 6, 12, 25}. Let’s set up a relation T on B

such that xTy if x|y and x 6= y. Then our picture would look like
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Mathematical relations can also be used to represent real-world relation-
ships, in which case they often have a less regular structure. For example,
suppose that we have a set of students and student x is related to student y
if x nominated y for ACM president. The graph of this relation (call it Q)
might look like:
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Relations can also be defined on infinite sets or multi-dimensional objects.
For example, we can define a relation Z on the real plane R

2 in which (x, y)
is related to (p, q) if and only if x2+ y2 = p2+ q2. In other words, two points
are related if they are the same distance from the origin.

For complex relations, the full directed graph picture can get a bit messy.
So there are simplified types of diagrams for certain specific special types of
relations, e.g. the so-called Hasse diagram for partial orders.

6.2 Properties of relations: reflexive

Relations are classified by several key properties. The first is whether an
element of the set is related to itself or not. There are three cases:

• Reflexive: every element is related to itself.

• Irreflexive: no element is related to itself.

• Neither reflexive nor irreflexive: some elements are related to them-
selves but some aren’t.

In our pictures above, elements related to themselves have self-loops. So it’s
easy to see that W and S are reflexive, T is irreflexive, and Q is neither.
The familiar relations ≤ and = on the real numbers are reflexive, but < is
irreflexive. Suppose we define a relation M on the integers by xMy if and
only if x + y = 0. Then 2 isn’t related to itself, but 0 is. So M is neither
reflexive nor irreflexive.

The formal definition states that if R is a relation on a set A then
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• R is reflexive if xRx for all x ∈ A.

• R is irreflexive if x 6Rx for all x ∈ A.

Notice that irreflexive is not the negation of reflexive. The negation of
reflexive would be:

• not reflexive: there is an x ∈ A, x 6Rx

6.3 Symmetric and antisymmetric

Another important property of a relation is whether the order matters within
each pair. That is, if xRy is in R, is it always the case that yRx? If this is
true, then the relation is called symmetric.

In a graph picture of a symmetric relation, a pair of elements is either
joined by a pair of arrows going in opposite directions, or no arrows. In our
examples with pictures above, only S is symmetric.

Relations that resemble equality are normally symmetric. For example,
the relation X on the integers defined by xXy iff |x| = |y| is symmetric. So
is the relation N on the real plane defined by (x, y)N(p, q)) iff (x−p)2+(y−
q)2 ≤ 25 (i.e. the two points are no more than 5 units apart).

Relations that put elements into an order, like ≤ or divides, have a differ-
ent property called antisymmetry. A relation is antisymmetric if two distinct1

elements are never related in both directions. In a graph picture of an an-
tisymmetric relation, a pair of points may be joined by a single arrow, or
not joined at all. They are never joined by arrows in both directions. In our
pictures above, W and T are antisymmetric.

As with reflexivity, there are mixed relations that have neither property.
So the relation Q above is neither symmetric nor antisymmetric.

If R is a relation on a set A, here’s the formal definition of what it means
for R to be symmetric (which doesn’t contain anything particularly difficult):

1“Distinct” means not equal.
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symmetric: for all x, y ∈ A, xRy implies yRx

There’s two ways to define antisymmetric. They are logically equivalent
and you can pick whichever is more convenient for your purposes:

antisymmetric: for all x and y in A with x 6= y, if xRy, then y 6Rx

antisymmetric: for all x and y in A, if xRy and yRx, then x = y

To interpret the second definition, remember that when mathematicians
pick two values x and y, they leave open the possibility that the two values
are actually the same. In normal conversational English, if we mention two
objects with different names, we normally mean to imply that they are differ-
ent objects. This isn’t the case in mathematics. I find that the first definition
of antisymmetry is better for understanding the idea, but the second is more
useful for writing proofs.

6.4 Transitive

The final important property of relations is transitivity. A relation R on a
set A is transitive if

transitive: for all a, b, c ∈ A, if aRb and bRc, then aRc

As we’ve seen earlier, transitivity holds for a broad range of familiar
numerical relations such as <, =, divides, and set inclusion. For example,
for real numbers, if x < y and y < z, then x < z. Similarly, if x|y and y|z,
then x|z. For sets, X ⊆ Y and Y ⊆ Z implies that X ⊆ Z.

If we look at graph pictures, transitivity means that whenever there is an
indirect path from x to y then there must also be a direct arrow from x to
y. This is true for S and B above, but not for W or Q.

We can also understand this by spelling out what it means for a relation
R on a set A not to be transitive:
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not transitive: there are a, b, c ∈ A, aRb and bRc and a 6Rc

So, to show that a relation is not transitive, we need to find one counter-
example, i.e. specific elements a, b, and c such that aRb and bRc but not
aRc. In the graph of a non-transitive relation, you can find a subsection that
looks like:
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b

c

It could be that a and c are actually the same element, in which case the
offending subgraph might look like:

a b

The problem here is that if aRb and bRa, then transitivity would imply
that aRa and bRb.

One subtle point about transitive is that it’s an if/then statement. So
it’s ok if some sets of elements just aren’t connected at all. For example, this
subgraph is consistent with the relation being transitive.

a b

c

A disgustingly counter-intuitive special case is the relation in which ab-
solutely no elements are related, i.e. no arrows at all in the graph picture.
This relation is transitive. it’s never possible to satisfy the hypothesis of the
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definition of transitive. It’s also symmetric, for the same reason. And, oddly
enough, antisymmetric. All of these properties hold via vacuous truth.

Vacuous truth doesn’t apply to reflexive and irreflexive, because they are
unconditional requirements, not if/then statements. So this empty relation
is irreflexive and not reflexive.

6.5 Types of relations

Now that we have these basic properties defined, we can define some impor-
tant types of relations. Three of these are ordering relations:

• A partial order is a relation that is reflexive, antisymmetric, and
transitive.

• A linear order (also called a total order) is a partial order R in which
every pair of elements are comparable. That is, for any two elements
x and y, either xRy or yRx.

• A strict partial order is a relation that is irreflexive, antisymmetric,
and transitive.

Linear orders are all very similar to the normal ≤ ordering on the real
numbers or integers. Partial orders differ from linear orders, in that there are
some pairs of elements which aren’t ordered with respect to each other. For
example, the divides relation on the integers is a partial order but not a linear
order, because it doesn’t relate some pairs of integers in either direction. For
example, 5 doesn’t divide 7, but neither does 7 divide 5. A strict partial order
is just like a partial order, except that objects are not related to themselves.
For example, the relation T in section 6.1 is a strict partial order.

The fourth type of relation is an equivalence relation:

Definition: An equivalence relation is a relation that is reflex-
ive, symmetric, and transitive.
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These three properties create a well-behaved notation of equivalence or
congruence for a set of objects, like congruence mod k on the set of integers.
In particular, if R is an equivalence relation on a set A and x is an element
of A, we can define the equivalence class of x to be the set of all elements
related to x. That is

[x]R = {y ∈ A | xRy}

When the relation is clear from the context (as when we discussed congruence
mod k), we frequently omit the subscript on the square brackets.

For example, we saw the relation Z on the real plane R2, where (x, y)Z(p, q)
if and only if x2 + y2 = p2 + q2. Then [(0, 1)]Z contains all the points related
to (0, 1), i.e. the unit circle.

6.6 Proving that a relation is an equivalence

relation

Let’s see how to prove that a new relation is an equivalence relation. These
proofs are usually very mechanical. For example, let F be the set of all
fractions, i.e.

F = {
p

q
| p, q ∈ Z and q 6= 0}

Fractions aren’t the same thing as rational numbers, because each rational
number is represented by many fractions. We consider two fractions to be
equivalent, i.e. represent the same rational number, if xq = yp. So, we have
an equivalence relation ∼ defined by: x

y
∼ p

q
if and only if xq = yp.

Let’s show that ∼ is an equivalence relation.

Proof: Reflexive: For any x and y, xy = xy. So the definition of
∼ implies that x

y
∼ x

y
.

Symmetric: if x
y
∼ p

q
then xq = yp, so yp = xq, so py = qx, which

implies that p

q
∼ x

y
.



CHAPTER 6. RELATIONS 75

Transitive: Suppose that x

y
∼ p

q
and p

q
∼ s

t
. By the definition of

∼, xq = yp and pt = qs. So xqt = ypt and pty = qsy. Since
ypt = pty, this means that xqt = qsy. Cancelling out the q’s, we
get xt = sy. By the definition of ∼, this means that x

y
∼ s

t
.

Since ∼ is reflexive, symmetric, and transitive, it is an equivalence
relation.

Notice that the proof has three sub-parts, each showing one of the key
properties. Each part involves using the definition of the relation, plus a
small amount of basic math. The reflexive case is very short. The symmetric
case is often short as well. Most of the work is in the transitive case.

6.7 Proving antisymmetry

Here’s another example of a relation, this time an order (not an equivalence)
relation. Consider the set of intervals on the real line J = {(a, b) | a, b ∈
R and a < b}. Define the containment relation C as follows:

(a, b) C (c, d) if and only if a ≤ c and d ≤ b

To show that C is a partial order, we’d need to show that it’s reflex-
ive, antisymmetric, and transitive. We’ve seen how to prove two of these
properties. Let’s see how to do a proof of antisymmetry.

For proving antisymmetry, it’s typically easiest to use this form of the
definition of antisymmetry: if xRy and yRx, then x = y. Notice that C is a
relation on intervals, i.e. pairs of numbers, not single numbers. Substituting
the definition of C into the definition of antisymmetry, we need to show that

For any intervals (a, b) and (c, d), if (a, b) C (c, d) and (c, d) C (a, b),
then (a, b) = (c, d).

So, suppose that we have two intervals (a, b) and (c, d) such that (a, b) C (c, d)
and (c, d) C (a, b). By the definition of C, (a, b) C (c, d) implies that a ≤ c

and d ≤ b. Similarly, (c, d) C (a, b) implies that c ≤ a and b ≤ d.
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Since a ≤ c and c ≤ a, a = c. Since d ≤ b and b ≤ d, b = d. So
(a, b) = (c, d).


