Preface

This book teaches two different sorts of things, woven together. It teaches
you how to read and write mathematical proofs. It provides a survey of basic
mathematical objects, notation, and techniques which will be useful in later
computer science courses. These include propositional and predicate logic,
sets, functions, relations, modular arithmetic, counting, graphs, and trees.
And, finally, it gives a brief introduction to some key topics in theoretical
computer science: algorithm analysis and complexity, automata theory, and
computability.

Why learn formal mathematics?

Formal mathematics is relevant to computer science in several ways. First, it
is used to create theoretical designs for algorithms and prove that they work
correctly. This is especially important for methods that are used frequently
and /or in applications where we don’t want failures (aircraft design, Pentagon
security, ecommerce). Only some people do these designs, but many people
use them. The users need to be able to read and understand how the designs
work.

Second, the skills you learn in doing formal mathematics correspond
closely to those required to design and debug programs. Both require keeping
track of what types your variables are. Both use inductive and/or recursive
design. And both require careful proofreading skills. So what you learn in
this class will also help you succeed in practical programming courses.

Third, when you come to design complex real software, you’ll have to
document what you’'ve done and how it works. This is hard for many peo-



PREFACE ii

ple to do well, but it’s critical for the folks using your software. Learning
how to describe mathematical objects clearly will translate into better skills
describing computational objects.

Everyone can do proofs

You probably think about proofs as something created by brilliant young
theoreticians. Some of you are brilliant young theoreticians and you’ll think
this stuff is fun because it’s what you naturally like to do. However, many
of you are future software and hardware engineers. Some of you may never
think of formal mathematics as “fun.” That’s ok. We understand. We're
hoping to give you a sense of why it’s pretty and useful, and enough fluency
with it to communicate with the theoretical side of the field.

Many people think that proofs involve being incredibly clever. That is
true for some steps in some proofs. That’s where it helps to actually be a
brilliant young theoretician. But many proofs are very routine. And many
steps in clever proofs are routine. So there’s quite a lot of proofs that all of
us can do. And we can all read, understand, and appreciate the clever bits
that we didn’t think up ourselves.

In other words, don’t be afraid. You can do proofs at the level required
for this course, and future courses in theoretical computer science.

Is this book right for you?

This book is designed for students who have taken an introductory program-
ming class of the sort intended for scientists or engineers. Algorithms will
be presented in “pseudo-code,” so it does not matter which programming
language you have used. But you should have written programs that ma-
nipulate the contents of arrays e.g. sort an array of numbers. You should
also have written programs that are recursive, i.e. in which a function (aka
procedure aka method) calls itself.

We’ll also assume that you have taken one semester of calculus. We will
make very little direct reference to calculus: only a brief and relatively infor-



PREFACE iii

mal use of limits in Chapter 14. However, we will assume a level of fluency
with precalculus (algebra, geometry, logarithms, etc) that is typically devel-
oped during while taking calculus. If you already have significant experience
writing proofs, including inductive proofs, this book may be too easy for you.
You may wish to read some of the books listed as supplementary readings in
Appendix B.

For instructors

This text is designed for a broad range of computer science majors, ranging
from budding young theoreticians to capable programmers with very little
interest in theory. It assumes only limited mathematical maturity, so that it
can be used very early in the major. Therefore, a central goal is to explain
the process of proof construction clearly to students who can’t just pick it
up by osmosis.

This book is designed to be succinct, so that students will read and ab-
sorb its contents. Therefore, it includes only core concepts and a selection
of illustrative examples, with the expectation that the instructor will pro-
vide supplementary materials as needed (see Appendix B for useful follow-on
books) and that students can look up a wider range of facts, definitions, and
pictures, e.g. on the internet.

Although the core topics in this book are old and established, terminol-
ogy and notation have changed over the years and vary somewhat between
authors. To avoid overloading students, I have chosen one clean, modern
version of notation, definitions, and terminology to use consistently in the
main text. Common variations are documented at the end of each chapter. If
students understand the underlying concepts, they should have no difficulty
adapting when they encounter different conventions in other books.

Many traditional textbooks do a careful and exhaustive treatment of each
topic from first principles, including foundational constructions and theorems
which prove that the conceptual system is well-formed. However, the most
abstract parts of many topics are hard for beginners to absorb and the impor-
tance of the foundational development is lost on most students at this level.
The early parts of this textbook remove most of this clutter, to focus more



PREFACE iv

clearly on the key concepts and constructs. At the end, we revisit certain
topics to look at more abstract examples and selected foundational issues.
See Appendix C for a quick guide to topic rearrangement.



