Chapter 11

Induction

This chapter covers mathematical induction.

11.1 Introduction to induction

At the start of the term, we saw the following formula for computing the
sum of the first n integers:

n . _ n(ntl)

Claim 38 For any positive integer n, %
At that point, we didn’t prove this formula correct, because this is most
easily done using a new proof technique: induction.

Mathematical induction is a technique for showing that a statement P(n)
is true for all natural numbers n, or for some infinite subset of the natural
numbers (e.g. all positive even integers). It’s a nice way to produce quick,
easy-to-read proofs for a variety of fact that would be awkward to prove with
the techniques you’ve seen so far. It is particularly well suited to analyzing
the performance of recursive algorithms. Most of you have seen a few of these
in previous programming classes; you’ll see many more in later classes.

Induction is very handy, but it may strike you as a bit weird. It may
take you some time to get used to it. In fact, you have two tasks which are
somewhat independent:
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e Learn how to write an inductive proof.

e Understand why inductive proofs are legitimate.

You can learn to write correct inductive proofs even if you remain some-
what unsure of why the method is legitimate. Over the next few classes,
you’ll gain confidence in the validity of induction and its friend recursion.

11.2 An Example

A proof by induction has the following outline:

Claim: P(n) is true for all positive integers n.
Proof: We'll use induction on n.
Base: We need to show that P(1) is true.

Induction: Suppose that P(n) is true forn =1,2,... k—1. We
need to show that P(k) is true.

The part of the proof labelled “induction” is a conditional statement. We
assume that P(n) is true for values of n no larger than k—1. This assumption
is called the inductive hypothesis. We use this assumption to show that P (k)
is true.

For our formula example, our proposition P(n) is X7, i = "("2+1). Sub-
stituting this definition of P into the outline, we get the following outline for
our specific claim:

Proof: We will show that X' ; i = w for any positive integer
n, using induction on n.

Base: We need to show that the formula holds for n = 1, i.e.

1 s 1.2
Ei:l 1 = -5 -

Induction: Suppose that X" | i = "("2+1) forn=1,2,...,k—1.

We need to show that XF ; i = @
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The full proof might then look like:

Proof: We will show that X7, ¢ = n(n;l) for any positive integer
n, using induction on n.

Base: We need to show that the formula holds forn = 1. X1, i =
1. And also £2 = 1. So the two are equal for n = 1.

Induction: Suppose that X1, ¢ = ™ "+1 L forn=1,2,... . k—1.

We need to show that ¥ | i = k(kgl).

By the definition of summation notation, ¥, i = (57! 4) + k
Our inductive hypothesis states that at n = k — 1, ¥F! ¢ =

k—1)k
(552).

Combmlng these two formulas, we get that ¥¥_, i = ((k_l)k) + k.

B ut (( )+k ( (k 21)k) + % _ ((k—12+2)k) _ k(kz—l—l)

So, combining these equations, we get that X¥ | i = k(kH which
is what we needed to show.

One way to think of a proof by induction is that it’s a template for
building direct proofs. If I give you the specific value n = 47, you could
write a direct proof by starting with the base case and using the inductive
step 46 times to work your way from the n = 1 case up to the n = 47 case.

11.3 Why is this legit?

There are several ways to think about mathematical induction, and under-
stand why it’s a legitimate proof technique. Different people prefer different
motivations at this point, so I'll offer several.

Domino Theory: Imagine an infinite line of dominoes. The
base step pushes the first one over. The inductive step claims
that one domino falling down will push over the next domino
in the line. So dominos will start to fall from the beginning all
the way down the line. This process continues forever, because
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the line is infinitely long. However, if you focus on any specific
domino, it falls after some specific finite delay.

Recursion fairy: The recursion fairy is the mathematician’s
version of a programming assistant. Suppose you tell her how to
do the proof for P(1) and also why P(1) up through P(k) implies
P(k + 1). Then suppose you pick any integer (e.g. 1034) then
she can take this recipe and use it to fill in all the details of a
normal direct proof that P holds for this particular integer. That
is, she takes P(1), then uses the inductive step to get from P(1)
to P(2), and so on up to P(1034).

Defining property of the integers: The integers are set up
mathematically so that induction will work. Some formal sets of
axioms defining the integers include a rule saying that induction
works. Other axiom sets include the “well-ordering” property:
any subset that has a lower bound also has a smallest element.
This is equivalent to an axiom that explicitly states that induction
works. Both of these axioms prevent the integers from having
extra very large elements that can’t be reached by repeatedly
adding one to some starting integer. So, for example, oo is not
an integer.

These arguments don’t depend on whether our starting point is 1 or some
other integer, e.g. 0 or 2 or -47. All you need to do is ensure that your base
case covers the first integer for which the claim is supposed to be true.

11.4 Building an inductive proof

In constructing an inductive proof, you've got two tasks. First, you need
to set up this outline for your problem. This includes identifying a suitable
proposition P and a suitable integer variable n.

Notice that P(n) must be a statement, i.e. something that is either true
or false. For example, it is never just a formula whose value is a number.
Also, notice that P(n) must depend on an integer n. This integer n is known
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as our induction variable. The assumption at the start of the inductive step
(“P(k) is true”) is called the inductive hypothesis.

Your second task is to fill in the middle part of the induction step. That
is, you must figure out how to relate a solution for a larger problem P(k) to
a solution for one or more of the smaller problems P(1)..., P(k —1). Most
students want to do this by starting with a small problem, e.g. P(k—1), and
adding something to it. For more complex situations, however, it’s usually
better to start with the larger problem and try to find an instance of the
smaller problem inside it.

11.5 Another example

The previous example applied induction to an algebraic formula. We can
also apply induction to other sorts of statements, as long as they involve a
suitable integer n.

3

Claim 39 For any natural number n, n> —n is divisible by 3.

3

In this case, P(n) is “n® — n is divisible by 3.”

So the outline of our proof looks like

Proof: By induction on n.
Base: Let n = 0. [prove that n® —n is divisible by 3 when n = 0]

Induction: Suppose that n3—n is divisible by 3, forn =0,1,..., k.
We need to show that (k+ 1) — (k + 1) is divisible by 3.

Fleshing out the details of the algebra, we get the following full proof:

Proof: By induction on n.
Base: Let n = 0. Then n® —n = 0> — 0 = 0 which is divisible by
3.

Induction: Suppose that n3—n is divisible by 3, forn = 0,1,..., k.
We need to show that (k+ 1) — (k + 1) is divisible by 3.
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(k4+1)2—(k+1) = (B*+3k*+3k+1)—(k+1) = (K*—k)+3(k*+k)

From the inductive hypothesis, (k* — k) is divisible by 3. And
3(k?* + k) is divisible by 3 since (k* 4+ k) is an integer. So their
sum is divisible by 3. That is (k + 1)* — (k4 1) is divisible by 3.
U

Notice that we've also used a variation on our induction outline, where
the induction hypothesis covers values up through & (instead of £ — 1) and
we prove the claim at n = k + 1 (instead of at n = k). It doesn’t matter
whether your hypothesis goes through n = k — 1 or n = k, as long as you
prove the claim for the next larger integer.

Also notice that our hypothesis says that the claim holds forn = 0,1, ..., k.
We are using the convention that this notation implies that £ > 0, not that
k is necessarily any larger (e.g. k > 1). That is, the 1 in this expresion is
used only to show the pattern of increase, and it does not imply anything
about the size of k.

The zero base case is technically enough to make the proof solid, but
sometimes a zero base case doesn’t provide good intuition or confidence. So
you’ll sometimes see an extra base case written out, e.g. n = 1 in this
example, to help the author or reader see why the claim is plausible.

11.6 Some comments about style

Notice that the start of the proof tells you which variable in your formula (n
in this case) is the induction variable. In this formula, the choice of induc-
tion variable is fairly obvious. But sometimes there’s more than one integer
floating around that might make a plausible choice for the induction variable.
It’s good style to always mention that you are doing a proof by induction,
say what your induction variable is, and label your base and inductive steps.

Notice that the proof of the base case is very short. In fact, I've written
about about twice as long as you’d normally see it. Almost all the time, the
base case is trivial to prove and fairly obvious to both you and your reader.
Often this step contains only some worked algebra and a check mark at the
end. However, it’s critical that you do check the base case. And, if your base
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case involves an equation, compute the results for both sides (not just one
side) so you can verify they are equal.

The important part of the inductive step is ensuring that you assume
P(1),...,P(k—1) and use these facts to show P(k). At the start, you must
spell out your inductive hypothesis, i.e. what P(n) is for your claim. It’s
usually helpful to explicitly substitute in some key values for n, e.g. work out
what P(k—1) is. Make sure that you use the information from the inductive
hypothesis in your argument that P(k + 1) holds. If you don’t, it’s not an
inductive proof and it’s very likely that your proof is buggy.

At the start of the inductive step, it’s also a good idea to say what you
need to show, i.e. quote what P(k) is.

These “style” issues are optional in theory, but actually critical for be-
ginners writing inductive proofs. You will lose points if your proof isn’t clear
and easy to read. Following these style points (e.g. labelling your base and
inductive steps) is a good way to ensure that it is, and that the logic of your
proof is correct.

11.7 A geometrical example

Let’s see another example of the basic induction outline, this time on a
geometrical application. Tiling some area of space with a certain type of
puzzle piece means that you fit the puzzle pieces onto that area of space
exactly, with no overlaps or missing areas. A right triomino is a 2-by-2
square minus one of the four squares.

I claim that
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Claim 40 For any positive integer n, a 2™ x 2™ checkerboard with any one
square removed can be tiled using right triominoes.

Proof: by induction on n.

Base: Suppose n = 1. Then our 2" x 2" checkerboard with one
square removed is exactly one right triomino.

Induction: Suppose that the claim is true for n = 1,..., k. That
is a 2™ x 2" checkerboard with any one square removed can be
tiled using right triominoes as long as n < k.

Suppose we have a 2Ft! x 2+ checkerboard C' with any one
square removed. We can divide C into four 2¥ x2* sub-checkerboards
P, @, R, and S. One of these sub-checkerboards is already miss-
ing a square. Suppose without loss of generality that this one is
S. Place a single right triomino in the middle of C' so it covers
one square on each of P, ), and R.

Now look at the areas remaining to be covered. In each of the
sub-checkerboards, exactly one square is missing (S) or already
covered (P, @, and R). So, by our inductive hypothesis, each
of these sub-checkerboards minus one square can be tiled with
right triominoes. Combining these four tilings with the triomino
we put in the middle, we get a tiling for the whole of the larger
checkerboard C'. This is what we needed to construct.

11.8 Graph coloring

We can also use induction to prove a useful general fact about graph col-
orability:

Claim 41 For any positive integer D, if all nodes in a graph G have degree
< D, then G can be colored with D + 1 colors.

The objects involved in this claim are graphs. To apply induction to
objects like graphs, we organize our objects by their size. Each step in the
induction process will show that the claim holds for all objects of a particular



CHAPTER 11. INDUCTION 130

(integer) size. For graphs, the “size” would typically be either the number
of nodes or the number of edges. For this proof, it’s most convenient to use
the number of nodes.

Proof: Let’s pick a positive integer D and prove the claim by
induction on the number of nodes in G.

Base: Since D > 1, the graph with just one node can obviously
be colored with D + 1 colors.

Induction: Suppose that any graph with at most £ — 1 nodes and
maximum node degree < D can be colored with D + 1 colors.

Let G be a graph with £ nodes and maximum node degree < D.
Remove some node v (and its edges) from G to create a smaller
graph G'.

G’ has k — 1 nodes. Also, the maximum node degree of G’ is
no larger than D, because removing a node can’t increase the
degree. So, by the inductive hypothesis, G’ can be colored with
D + 1 colors.

Because v has at most D neighbors, its neighbors are only using
D of the available colors, leaving a spare color that we can assign
to v. The coloring of G’ can be extended to a coloring of G with
D + 1 colors.

We can use this idea to design an algorithm (called the “greedy” algo-
rithm) for coloring a graph. This algorithm walks through the nodes one-by-
one, giving each node a color without revising any of the previously-assigned
colors. When we get to each node, we see what colors have been assigned to
its neighbors. If there is a previously used color not assigned to a neighbor,
we re-use that color. Otherwise, we deploy a new color. The above theorem
shows that the greedy algorithm will never use more than D + 1 colors.

Notice, however, that D + 1 is only an upper bound on the chromatic
number of the graph. The actual chromatic number of the graph might be a
lot smaller. For example, D + 1 would be 7 for the wheel graph W4 but this
graph actually has chromatic number only three:
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© ®)

The performance of the greedy algorithm is very sensitive to the order
in which the nodes are considered. For example, suppose we start coloring
We by coloring the center hub, then a node v on the outer ring, and then
the node opposite v. Then our partial coloring might look as shown below.
Completing this coloring will require using four colors.

Notice that whether we need to deploy a new color to handle a node isn’t
actually determined by the degree of the node but, rather, by how many of
its neighbors are already colored. So a useful heuristic is to order nodes by
their degrees and color higher-degree nodes earlier in the process. This tends
to mean that, when we reach a high-degree node, some of its neighbors will
not yet be colored. So we will be able to handle the high-degree nodes with
fewer colors and then extend this partial coloring to all the low-degree nodes.

11.9 Postage example

In the inductive proofs we’ve seen so far, we didn’t actually need the full
information in our inductive hypothesis. Our inductive step assumed that
P(n) was true for all values of n from the base up through k& — 1, a so-
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called “strong” inductive hypothesis. However, the rest of the inductive step
actually depended only on the information that P(k — 1) was true. We
could, in fact, have used a simpler inductive hypothesis, known as a “weak”
inductive hypothesis, in which we just assumed that P(k — 1) was true.

We'll now see some examples where a strong inductive hypothesis is es-
sential, beucase the result for n = k£ depends on the result for some smaller
value of n, but it’s not the immediately previous value k£ — 1. Here’s a classic
example:

Claim 42 FEvery amount of postage that is at least 12 cents can be made
from 4-cent and 5-cent stamps.

Before trying to prove a claim of this sort, you should try small examples
and verify that the stated base case is correct. That is, in this case, that you
can make postage for some representative integers, > 12, but you can’t do it
for 11.

For example, 12 cents uses three 4-cent stamps. 13 cents of postage uses
two 4-cent stamps plus a H-cent stamp. 14 uses one 4-cent stamp plus two
5-cent stamps. If you experiment with small values, you quickly realize that
the formula for making k cents of postage depends on the one for making
k — 4 cents of postage. That is, you take the stamps for k — 4 cents and add
another 4-cent stamp. We can make this into an inductive proof as follows:

Proof: by induction on the amount of postage.

Base: If the postage is 12 cents, we can make it with three 4-cent
stamps. If the postage is 13 cents, we can make it with two 4-cent
stamps. plus a 5-cent stamp. If it is 14, we use one 4-cent stamp
plus two 5-cent stamps. If it is 15, we use three 5-cent stamps.

Induction: Suppose that we have show how to construct postage
for every value from 12 up through k£ — 1. We need to show how
to construct k cents of postage. Since we've already proved base
cases up through 15 cents, we’ll assume that £ > 16.

Since k > 16, kK — 4 > 12. So by the inductive hypothesis, we
can construct postage for k — 4 cents using m 4-cent stamps and
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n H-cent stamps, for some natural numbers m and n. In other
words k — 4 = 4m + 5n.

But then k£ = 4(m + 1) 4+ 5n. So we can construct k cents of
postage using m + 1 4-cent stamps and n 5-cent stamps, which is
what we needed to show.

Notice that we needed to directly prove four base cases, since we needed
to reach back four integers in our inductive step. It’s not always obvious how
many base cases are needed until you work out the details of your inductive
step. The first base case was n = 12 because our claim only starts working
consistently for integers > 12.

11.10 Nim

In the parlour game Nim, there are two players and two piles of matches. At
each turn, a player removes some (non-zero) number of matches from one of
the piles. The player who removes the last match wins.!

Claim 43 If the two piles contain the same number of matches at the start
of the game, then the second player can always win.

Here’s a winning strategy for the second player. Suppose your opponent
removes m matches from one pile. In your next move, you remove m matches
from the other pile, thus evening up the piles. Let’s prove that this strategy
works.

Proof by induction on the number of matches (n) in each pile.

Base: If both piles contain 1 match, the first player has only one
possible move: remove the last match from one pile. The second
player can then remove the last match from the other pile and
thereby win.

1Or, in some variations, loses. There seem to be several variations of this game.
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Induction: Suppose that the second player can win any game that
starts with two piles of n matches, where n is any value from 1
through k£ — 1. We need to show that this is true if n = k.

So, suppose that both piles contain & matches. A legal move by
the first player involves removing 7 matches from one pile, where
1 < j < k. The piles then contain k£ matches and k& — j matches.

The second player can now remove j matches from the other pile.
This leaves us with two piles of £ — 7 matches. If 7 = k, then
the second player wins. If 7 < k, then we're now effectively at
the start of a game with k£ — 7 matches in each pile. Since j > 1,
k—j < k—1. So, by the induction hypothesis, we know that the
second player can finish the rest of the game with a win.

The induction step in this proof uses the fact that our claim P(n) is
true for a smaller value of n. But since we can’t control how many matches
the first player removes, we don’t know how far back we have look in the
sequence of earlier results P(1)...P(k). Our previous proof about postage
can be rewritten so as to avoid strong induction. It’s less clear how to rewrite
proofs like this Nim example.

11.11 Prime factorization

Early in this course, we saw the “Fundamental Theorem of Arithmetic,”
which states that every positive integer n, n > 2, can be expressed as the
product of one or more prime numbers. Let’s prove that this is true.

Recall that a number n is prime if its only positive factors are one and
n. n is composite if it’s not prime. Since a factor of a number must be no
larger than the number itself, this means that a composite number n always
has a factor larger than 1 but smaller than n. This, in turn, means that we
can write n as ab, where a and b are both larger than 1 but smaller than n.?

Proof by induction on n.

2We'll leave the details of proving this as an exercise for the reader.
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Base: 2 can be written as the product of a single prime number,
2.

Induction: Suppose that every integer between 2 and k can be
written as the product of one or more primes. We need to show
that k& 4+ 1 can be written as a product of primes. There are two
cases:

Case 1: k+ 1 is prime. Then it is the product of one prime, i.e.
itself.

Case 2: k + 1 is composite. Then k + 1 can be written as ab,
where a and b are integers such that a and b lie in the range
[2, k]. By the induction hypothesis, a can be written as a product
of primes p1psy...p; and b can be written as a product of primes
¢1G2 - - - qj. So then k + 1 can be written as the product of primes

pbip2...-piq1q2 - - - q;-

In both cases k + 1 can be written as a product of primes, which
is what we needed to show.

Again, the inductive step needed to reach back some number of steps in
our sequence of results, but we couldn’t control how far back we needed to

go.

11.12 Variation in notation

Certain details of the induction outline vary, depending on the individual
preferences of the author and the specific claim being proved. Some folks
prefer to assume the statement is true for k£ and prove it’s true for k£ + 1.
Other assume it’s true for £ — 1 and prove it’s true for k. For a specific
problems, sometimes one or the other choice yields a slightly simpler proofs.

Folks differ as to whether the notation n = 0,1, ...,k implies that k is
necessarily at least 0, at least 1, or at least 2.

Some authors prefer to write strong induction hypotheses all the time,
even when a weak hypothesis would be sufficient. This saves mental effort,
because you don’t have to figure out in advance whether a strong hypothesis
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was really required. However, for some problems, a strong hypothesis may
be more complicated to state than a weak one.

Authors writing for more experienced audiences may abbreviate the out-
line somewhat, e.g. packing an entirely short proof into one paragraph with-
out labelling the base and inductive steps separately. However, being careful
about the outline is important when you are still getting used to the tech-
nique.



