
Chapter 9

Graphs

Graphs are a very general class of object, used to formalize a wide variety of
practical problems in computer science. In this chapter, we’ll see the basics
of (finite) undirected graphs, including graph isomorphism and connectivity.

9.1 Graphs

A graph consists of a set of nodes V and a set of edges E. We’ll sometimes
refer to the graph as a pair of sets (V,E). Each edge in E joins two nodes
in V . Two nodes connected by an edge are called neighbors or adjacent

For example, here is a graph in which the nodes are Illinois cities and the
edges are roads joining them:

Chicago

Springfield

Bloomington

Urbana Danville

Decatur

100
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A graph edge can be traversed in both directions, as in this street example,
i.e. the edges are undirected. When discussing relations earlier, we used
directed graphs, in which each edge had a specific direction. Unless we
explicitly state otherwise, a “graph” will always be undirected. Concepts for
undirected graphs extend in straightforward ways to directed graphs.

When there is only one edge connecting two nodes x and y, we can name
the edge using the pair of nodes. We could call the edge xy or (since order
doesn’t matter) yx or {x, y}. So, in the graph above, the Urbana-Danville
edge connects the node Urbana and the node Danville.

In some applications, we need graphs in which two nodes are connected
by multiple edges, i.e. parallel edges with the same endpoints. For exam-
ple, the following graph shows ways to travel among four cities in the San
Francisco Bay Area. It has three edges from San Francisco to Oakland, repre-
senting different modes of transportation. When multiple edges are present,
we typically label the edges rather than trying to name edges by their end-
points. This diagram also illustrates a loop edge which connects a node to
itself.

San Francisco Oakland

FremontPalo Alto

ferry

plane

I-80

tourist cruise

Rt 101

Rt 84

I-880

A graph is called a simple graph if it has neither multiple edges nor
loop edges. Unless we explicitly state otherwise, a “graph” will always be a
simple graph. Also, we’ll assume that it has at least one node and that it
has only a finite number of edges and nodes. Again, most concepts extend
in a reasonable way to infinite and non-simple graphs.
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9.2 Degrees

The degree of a node v, written deg(v) is the number of edges which have v as
an endpoint. Self-loops, if you are allowing them, count twice. For example,
in the following graph, a has degree 2, b has degree 6, d has degree 0, and so
forth.

a

b

e

c

d

f

Each edge contributes to two node degrees. So the sum of the degrees of
all the nodes is twice the number of edges. This is called the Handshaking
Theorem and can be written as

∑

v∈V

deg(v) = 2|E|

This is a slightly different version of summation notation. We pick each
node v in the set V , get its degree, and add its value into the sum. Since
V is finite, we could also have given names to the nodes v1, . . . , vn and then
written

n∑

k=1

vk ∈ V deg(v) = 2|E|

The advantage to the first, set-based, style is that it generalizes well to
situations involving infinite sets.
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9.3 Complete graphs

Several special types of graphs are useful as examples. First, the complete
graph on n nodes (shorthand name Kn), is a graph with n nodes in which
every node is connected to every other node. K5 is shown below.

a

b c

d e

To calculate the number of edges in Kn, think about the situation from
the perspective of the first node. It is connected to n− 1 other nodes. If we
look at the second node, it adds n − 2 more connections. And so forth. So
we have

∑n

k=1(n− k) =
∑n−1

k=0 k = n(n−1)
2

edges.

9.4 Cycle graphs and wheels

Suppose that we have n nodes named v1, . . . , vn, where n ≥ 3. Then the
cycle graph Cn is the graph with these nodes and edges connecting vi to vi+1,
plus an additional edge from vn to v1. That is, the set of edges is:

E = {v1v2, v2v3, . . . , vn−1vn, vnv1}

So C5 looks like
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a

b c

d e

Cn has n nodes and also n edges. Cycle graphs often occur in networking
applications. They could also be used to model games like “telephone” where
people sit in a circle and communicate only with their neighbors.

The wheel Wn is just like the cycle graph Cn except that it has an addi-
tional central “hub” node which is connected to all the others. Notice that
Wn has n + 1 nodes (not n nodes). It has 2n edges. For example, W5 looks
like

a

b c

d e

hub

9.5 Isomorphism

In graph theory, we only care about how nodes and edges are connected
together. We don’t care about how they are arranged on the page or in
space, how the nodes and edges are named, and whether the edges are drawn
as straight or curvy. We would like to treat graphs as interchangeable if they
have the same abstract connectivity structure.

Specifically, suppose that G1 = (V1, E1) and G2 = (V2, E2) are graphs.
An isomorphism from G1 to G2 is a bijection f : V1 → V2 such that nodes
a and b are joined by an edge if and only if f(a) and f(b) are joined by an
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edge. The graphs G1 and G2 are isomorphic if there is an isomorphism
from G1 to G2.

For example, the following two graphs are isomorphic. We can prove this
by defining the function f so that it maps 1 to d, 2 to a, 3 to c, and 4 to b.
The reader can then verify that edges exist in the left graph if and only if
the corresponding edges exist in the right graph.

a

b

c

d

1

2

3

4

Graph isomorphism is another example of an equivalence relation. Each
equivalence class contains a group of graphs which are superficially different
(e.g. different names for the nodes, drawn differently on the page) but all
represent the same underlying abstract graph.

To prove that two graphs are not isomorphic, we could walk through
all possible functions mapping the nodes of one to the nodes of the other.
However, that’s a huge number of functions for graphs of any interesting
size. An exponential number, in fact. Instead, a better technique for many
examples is to notice that a number of graph properties are “invariant,” i.e.
preserved by isomorphism.

• The two graphs must have the same number of nodes and the same
number of edges.

• For any node degree k, the two graphs must have the same number of
nodes of degree k. For example, they must have the same number of
nodes with degree 3.

We can prove that two graphs are not isomorphic by giving one example
of a property that is supposed to be invariant but, in fact, differs between
the two graphs. For example, in the following picture, the lefthand graph
has a node of degree 3, but the righthand graph has no nodes of degree 3, so
they can’t be isomorphic.
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9.6 Subgraphs

It’s not hard to find a pair of graphs that aren’t isomorphic but where the
most obvious properties (e.g. node degrees) match. To prove that such a pair
isn’t isomorphic, it’s often helpful to focus on certain specific local features of
one graph that aren’t present in the other graph. For example, the following
two graphs have the same node degrees: one node of degree 1, three of degree
2, one of degree 3. However, a little experimentation suggests they aren’t
isomorphic.

a

b

c

de

1

2

3

4 5

To make a convincing argument that these graphs aren’t isomorphic, we
need to define the notion of a subgraph. If G and G′ are graphs, then G′

is a subgraph of G if and only if the nodes of G′ are a subset of the nodes of
G and the edges of G′ are a subset of the edges of G. If two graphs G and
F are isomorphic, then any subgraph of G must have a matching subgraph
somewhere in F .

A graph has a huge number of subgraphs. However, we can usually find
evidence of non-isomorphism by looking at small subgraphs. For example, in
the graphs above, the lefthand graph has C3 as a subgraph, but the righthand
graph does not. So they can’t be isomorphic.
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9.7 Walks, paths, and cycles

In a graph G, a walk of length k from node a to node b is a finite sequence
of nodes a = v1, v2, . . . , vn = b and a finite sequence of edges e1, e2, . . . , en−1

in which ei connects vi and vi+1, for all i. Under most circumstances, it isn’t
necessary to give both the sequence of nodes and the sequence of edges: one
of the two is usually sufficient. The length of a walk is the number of edges
in it. The shortest walks consist of just a single node and have length zero.

A walk is closed if its starting and ending nodes are the same. Otherwise
it is open. A path is a walk in which no node is used more than once. A
cycle is a closed walk with at least three nodes in which no node is used
more than once except that the starting and ending nodes are the same. The
apparently ad-hoc requirement that a cycle contain at least three nodes is
important, because it forces a cycle to form a ring that can (for example)
enclose a region of 2D.

For example, in the following graph, there is a length-3 walk from a to
e: ac, cd, de. Another walk of length 3 would have edges: ab, bd, de. These
two walks are also paths. There are also longer walks from a to e, which
aren’t paths because they re-use nodes, e.g. the walk with a node sequence
a, c, d, b, d, e. If you have a walk between two nodes, you can always creat a
path between the nodes by pruning unnecessary loops from the walk.

a

b

c

d e

In the following graph, one cycle of length 4 has edges: ab, bd, dc, ca.
Other closely-related cycles go through the same nodes but with a different
starting point or in the opposite direction, e.g. dc, bd, ab, ca. (Remember
that cd and dc are two names for the same edge.) Unlike cycles, closed walks
can re-use nodes, e.g. ab, ba, ac, ce, ec, ca is a closed walk but not a cycle.
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The following graph is acyclic, i.e. it doesn’t contain any cycles.

a

b

c

d

e

f

Notice that the cycle graph Cn contains 2n different cycles. For example,
if the vertices of C4 are labelled as shown below, then one cycle is ab, bc, cd, da,
another is cd, bc, ab, da, and so forth.

ab

c d

9.8 Connectivity

A graph G is connected if there is a walk between every pair of nodes in
G. Our previous examples of graphs were connected. The following graph is
not connected, because there is no walk from (for example), a to g.
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h

If we have a graph G that might or might not be connected, we can di-
vide G into connected components. Each connected component contains
a maximal (i.e. biggest possible) set of nodes that are all connected to one
another, plus all their edges. So, the above graph has three connected com-
ponents: one containing nodes a,b,c, and d, a second containing nodes e, f,
and g, and a third that contains only the node h.

Sometimes two parts of a graph are connected by only a single edge, so
that the graph would become disconnected if that edge were removed. This
is called a cut edge. For example, in the following graph, the edge ce is a
cut edge. In some applications, cut edges are a problem. E.g. in network-
ing, they are places where the network is vulnerable. In other applications
(e.g. compilers), they represent opportunities to divide a larger problem into
several simpler ones.

a

b

c

d e f

g

9.9 Distances

In graphs, distances are based on the lengths of paths connecting pairs of
nodes. Specifically, the distance d(a, b) between two nodes a and b is the
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length of the shortest path from a to b. The diameter of a graph is the
maximum distance between any pair of nodes in the graph. For example,
the lefthand graph below has diameter 4, because d(f, e) = 4 and no other
pair of nodes is further apart. The righthand graph has diameter 2, because
d(1, 5) = 2 and no other pair of nodes is further apart.

f a

b

c
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9.10 Euler circuits

An Euler circuit of a graph G is a closed walk that uses each edge of the
graph exactly once. Notice that “G has an Euler circuit” means that every
edge of G is in the circuit; it’s not enough for some subgraph of G to have a
suitable circuit. For example, one Euler circuit of the following graph would
be ac, cd, df , fe, ec, cf , fb, ba.

a

b

c

d

e

f

An Euler circuit is possible exactly when the graph is connected and each
node has even degree. Each node has to have even degree because, in order
to complete the circuit, you have to leave each node that you enter. If the
node has odd degree, you will eventually enter a node but have no unused
edge to go out on.
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Fascination with Euler circuits dates back to the 18th century. At that
time, the city of Königberg, in Prussia, had a set of bridges that looked
roughly as follows:

Folks in the town wondered whether it was possible to take a walk in
which you crossed each bridge exactly once, coming back to the same place
you started. This is the kind of thing that starts long debates late at night in
pubs, or keeps people amused during boring church services. Leonard Euler
was the one who explained clearly why this isn’t possible.

For our specific example, the corresponding graph looks as follows. Since
all of the nodes have odd degree, there’s no possibility of an Euler circuit.

9.11 Bipartite graphs

Another special type of graph is a bipartite graph. A graph G = (V,E) is
bipartite if we can split V into two non-overlapping subsets V1 and V2 such
that every edge in G connects an element of V1 with an element of V2. That
is, no edge connects two nodes from the same part of the division.
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For example, the cube graph is bipartite. If we assign nodes to the R and
G groups as shown below, then there are no edges connecting an R node to
an R node, or a G node to a G node.

R

RG

G

G

GR

R

Bipartite graphs often appear in matching problems, where the two sub-
sets represent different types of objects. For example, one group of nodes
might be students, the other group of nodes might be workstudy jobs, and
the edges might indicate which jobs each student is interested in.

The complete bipartite graph Km,n is a bipartite graph with m nodes in
V1, n nodes in V2, and which contains all possible edges that are consistent
with the definition of bipartite. The diagram below shows a partial bipartite
graph on a set of 7 nodes, as well as the complete bipartite graph K3,2.

The complete bipartite graph Km,n has m+ n nodes and mn edges.
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9.12 Variation in terminology

Although the core ideas of graph theory are quite stable, terminology varies
a lot and there is a huge range of specialized terminology for specific types
of graphs. In particular, nodes are often called “vertices” Notice that the
singular of this term is “vertex” (not “vertice”). A complete graph on some
set of vertices is also known as a clique.

What we’re calling a “walk” used to be widely called a “path.” Authors
who still use this convention would then use the term “simple path” to ex-
clude repetition of vertices. Terms for closely-related concepts, e.g. cycle,
often change as well.

Authors vary as to whether the wheel graph Wn has n or n+ 1 nodes.


