
Chapter 20

Countability

This chapter covers infinite sets and countability.

20.1 The rationals and the reals

You’re familiar with three basic sets of numbers: the integers, the rationals,
and the reals. The integers are obviously discrete, in that there’s a big gap
between successive pairs of integers.

To a first approximation, the rational numbers and the real numbers seem
pretty similar. The rationals are dense in the reals: if I pick any real number
x and a distance δ, there is always a rational number within distance δ of x.
Between any two real numbers, there is always a rational number.

We know that the reals and the rationals are different sets, because we’ve
shown that a few special numbers are not rational, e.g. π and

√
2. However,

these irrational numbers seem like isolated cases. In fact, this intuition is
entirely wrong: the vast majority of real numbers are irrational and the
rationals are quite a small subset of the reals.
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20.2 Completeness

One big difference between the two sets is that the reals have a so-called
“completeness” property. It states that any subset of the reals with an upper
bound has a smallest upper bound. (And similarly for lower bounds.) So if I
have a sequence of reals that converges, the limit it converges to is also a real
number. This isn’t true for the rationals. We can make a series of rational
numbers that converge π (for example) such as

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, 3.14159265

But there is no rational number equal to π.

In fact, the reals are set up precisely to make completeness work. One
way to construct the reals is to construct all convergent sequences of rationals
and add new points to represent the limits of these sequences. Most of the
machinery of calculus depends on the existence of these extra points.

20.3 Cardinality

We know how to calculate and compare the sizes of finite sets. To extend
this idea to infinite sets, we use bijections functions to compare the sizes of
sets:

Definition: Two sets A and B have the same cardinality (|A| =
|B|) if and only if there is a bijection from A to B.

We’ve seen that there is a bijection between two finite sets exactly when
the sets have the same number of elements. So this definition of cardinality
matches our normal notion of how big a finite set is. But, since we don’t
have any numbers of infinite size, working with bijections extends better to
infinite sets.

The integers and the natural numbers have the same cardinality, because
we can construct a bijection between them. Consider the function f : N → Z

where f(n) = n

2
when n is even and f(n) = −(n+1)

2
when n is odd. f maps
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the even natural numbers bijectively onto the non-negative integers. It maps
the odd natural numbers bijectively onto the negative integers.

Similarly, we can easily construct bijections between Z or N and various
of their infinite subsets. For example, the formula f(n) = 3n creates a
bijection from the integers to the powers of 3. If S is any infinite subset of
the natural numbers, we can number the elements of S in order of increasing
size: s0, s1, s2, . . .. This creates a bijection between S and N.

Because the integers are so important, there’s a special name for sets that
have the same cardinality as the integers:

An infinite set A is countably infinite if there is a bijection from
N (or equivalently Z) onto A.

The term countable is used to cover both finite sets and sets that are count-
ably infinite. All subsets of the integers are countable.

20.4 Cantor Schroeder Bernstein Theorem

For certain countably infinite sets, it’s awkward to directly build a bijection
to the integers or natural numbers. Fortunately, a more general technique is
available. Remember that for finite sets, we could build a one-to-one function
from A to B if and only if |A| ≤ |B|. Using this idea, we can define a partial
order on sets, finite or infinite:

Definition: |A| ≤ |B| if and only if there is a one-to-one function
from A to B.

It is the case that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. That
is, if you can build one-to-one functions in both directions, a bijection does
exist. This result is called the Cantor Schroeder Bernstein Theorem.1 It
allows us to do very slick 2-way bounding proofs that a wide range of sets
are countably infinite.

1See the Fendel and Resek book in the bibliography for a proof, and the Liebeck book

for a much simpler proof for the case where one of the sets is N.
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For example, consider N2, the set of pairs of natural numbers. It’s possible
to directly construct a bijection f : N2 → N, but the details are a bit messy.
Instead, let’s build one-to-one functions in both directions. Easy direction
first: define f1 : N → N2 by f1(n) = (n, 0). This is one-to-one, so |N| ≤ |N2|
(which you were probably prepared to consider obvious).

In the opposite direction, consider the following function: f2 : N2 → N

such that f2(n,m) = 2n3m. This is one-to-one because prime factorizations
are unique. So |N2| ≤ |N|. Since we have one-to-one functions in both
directions, Cantor Schroeder Bernstein implies that |N2| = |N|. Therefore
N2 is countably infinite.

This construction can be extended to show the countability of any finite
Cartesian product of integers or natural numbers. E.g. the set of 7-tuples of
integers is countable. This also implies that a countable union of countable
sets is countable, because we can use pairs of natural numbers to index the
members of such a union. That is, the kth element of the jth set in the union
would be associated with the element (j, k) in N2.

20.5 More countably infinite sets

Suppose that we have a finite set M of characters. For example, M might
be the set of 26 upper-case alphabetic characters. Then the set M∗ contains
all character strings of various finite lengths, such as I, THIS, FINITE, and
RUMBLESEAT. It also contains the string ǫ of zero length. I claim that M∗ is
countably infinite.

To prove this, we’ll build one-to-one functions in both directions. First,
we can create a one-to-one function f from N to M∗ by mapping each natural
number n to the string consisting of n A’s. For example, f(0) = ǫ, f(2) = AA,
and f(5) = AAAAA.

In the other direction, notice that each letter in M has a 2-digit ASCII
code: A has the code 65, B is 66, and so on up to 90 for Z. We can translate
each string into a sequence of digits by replacing each letter with its ASCII
code. E.g. RUBY becomes 82856689. This doesn’t work for the string ǫ, so
we’ll translate it specially to the number 0. We’ve now created a one-to-one
mapping from strings in A∗ to natural numbers.
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We can also show that the non-negative rational numbers are countably
infinite. It’s easy to make a one-to-one function from the natural numbers
to the non-negative rational numbers: just map each natural number n to
itself. So |N| ≤ |Q≥0|. So now we just need a one-to-one function from the
non-negative rationals to the integers, to show that |Q≥0| ≤ |N|.

To map the non-negative rational numbers to the natural numbers, first
map each rational number to one representative fraction, e.g. the one in
lowest terms. This isn’t a bijection, but it is one-to-one. Then use the
method we saw above to map the fractions, which are just pairs of non-
negative integers, to the natural numbers. We now have the required one-to-
one function from the non-negative rationals to the natural numbers.

This construction can be adapted to also handle negative rational num-
bers. So the set of rational numbers is countably infinite. And, more gener-
ally, any subset of the rationals is countable.

20.6 P(N) isn’t countable

Before looking at the real numbers, let’s first prove a closely-related result
that’s less messy: P(N) isn’t countable. Recall that P(N) is the power set of
the natural numbers i.e. the set containing all subsets of the natural numbers.

Suppose that A is a finite set {a0, a1, a2, . . . , an}. We can represent a
subset X of A as a bit vector {b0, b1, b2, . . . , bn} where bi is 1 if and only if
ai is in X . For example, if A = {7, 8, 9, 10, 11}, then the bit-vector 01100
would represent the subset {8, 9} and the bit-vector 10101 would represent
the subset {7, 9, 11}. Similarly, we can represent a subset of the natural
numbers as an infinite-length bit vector.

We’ll use a procedure called diagonalization (due to Georg Cantor) to
show that it’s impossible to build a bijection from the natural numbers to
these infinite bit vectors representing the subsets of the natural numbers
Suppose that there were such a bijection. Then we could put all the bit
vectors into a list, e.g. v0 would be the first bit vector, v1 the second, and
so forth. Our list of bit vectors might look like this, where the kth column
contains the value of the kth digit (bk) for all the bit vectors:
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b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 . . .

v0 1 1 0 1 1 0 1 1 1 1 . . .

v1 1 1 0 0 1 0 1 1 0 0 . . .

v2 0 0 0 0 1 0 0 1 0 0 . . .

v3 0 1 1 1 1 0 1 0 0 0 . . .

v4 0 0 0 0 1 1 1 0 1 1 . . .

v5 1 1 1 0 1 0 1 0 0 1 . . .

. . . . . .

This is supposed to be a complete list of all the bit vectors. But we can
construct a bit vector x that’s not on the list. The value of xk, i.e. the kth
bit in our new vector, will be 0 if the k digit of vk is 1, and 1 if the k digit
of vk is 0. Notice that x is different from v3 because the two vectors differ
in the third position. It can’t be v20 because the two vectors differ in the
twentieth position. And, in general, x can’t equal vk because the two vectors
differ in the kth position. For the example above, the new vector not in the
list would start out: 0 0 1 0 0 1 . . ..

So, it’s not possible to put these infinite bit vectors into a list indexed
by the natural numbers, because we can always construct a new bit vector
that’s not on the list. That is, there can’t be a one-to-one function from the
infinite bit vectors to the natural numbers. So there can’t be a one-to-one
function from the subsets of the natural numbers to the natural numbers. So
P(N) isn’t countable. That is, the subsets of the natural numbers are more
numerous than the natural numbers themselves.

20.7 More uncountability results

This same diagonalization trick can be used to show that various other sets
aren’t countable. For example, we can show that the real numbers aren’t
countable. To show this, we show that even the numbers in the interval
[0, 1] aren’t countable. Suppose that the elements of [0, 1] were countable.
Then we could put these real numbers into a list a1, a2, and so forth. Let’s
write out a table of the decimal expansions of the numbers on this list. Now,
examine the digits along the diagonal of this table: a11, a22, etc. Suppose
we construct a new number b whose kth digit bk is 4 when akk is 5, and 5
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otherwise. Then b won’t match any of the numbers in our table, so our table
wasn’t a complete list of all the numbers in [0, 1]. So, [0, 1] is not countable,
and therefore the reals can’t be countable.

Next, notice that an infinite bit vector is a function from the natural
numbers to the set {0, 1}. So we’ve shown that there are uncountably many
functions from the natural numbers to {0, 1}. So there must be uncountably
many functions from the natural numbers to the natural numbers, or from
the integers to the integers.

Another generalization involves noticing that our diagonalization proof
doesn’t really depend on any special properties of the natural numbers. So
it can be adapted to show that, if A is any set, P(A) has a (strictly) larger
cardinality than A. So, not only is P(N) larger than N, but P(P(N)) is even
larger. So there is a whole sequence of larger and larger infinite cardinalities.

So, in particular, P(R) is larger than R. However, notice that R2 has the
same cardinality as R. Let’s consider a simpler version of this problem: [0, 1)2

has the same cardinality as [0, 1). Any element of [0, 1)2 can be represented
as two infinite sequences of decimal digits: 0.a1a2a3a4 . . . and 0.b1b2b3b4 . . ..
We can map this to a single real number by interleaving the digits of the two
numbers: 0.a1b1a2b2a3b3 . . .. This defines a bijection between the two sets.
This method can be adapted to create a bijection between all of R2 and R.

20.8 Uncomputability

We can pull some of these facts together into some interesting consequences
for computer science. Notice that a formula for a function is just a finite
string of characters. So the set of formulas is countable. But the set of
functions, even from the integers to the integers, is uncountable. So there
are more functions than formulas, i.e. some functions which have no finite
formula.

Similarly, notice that a computer program is simply a finite string of
ASCII characters. So there are only countably many computer programs.
But there are uncountably many functions. So there are more functions
than programs, i.e. there are functions which cannot be computed by any
program.
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Specifically, it can be shown that it is not possible to build a program
that reads the code of other programs and decides whether they eventually
halt or run forever. At least, not a fully-general algorithm that will work
on any possible input program. This famous result is called the Halting

Problem and its proof uses a variation of diagonalization.

The reason why it’s so hard to tell if a program halts is that, even though
the code for a computer program is finite in length, the program may go
through infinite many different states as it runs. Specifically, program be-
havior falls into three categories:

(1) The program eventually halts, so the trace is finite.

(2) The program loops, in the sense of returning back to a previous state.

(3) The program keeps going forever, consuming more and more storage
space rather than returning to a previous state.

The second type of behavior is like the decimal expansion of a rational
number: repeating. The third type of behavior is similar to a real number’s
decimal expansion: an infinite sequence which doesn’t repeat. The poten-
tial for running forever without repeating states is what makes the Halting
Problem so difficult.

The Halting problem is closely connected to results from other areas in-
volving non-periodic behavior, because other types of systems can be used
to simulate the essential features of computer programs. A simple, but effec-
tive computer can be simulated in Conway’s Game of Life. Configurations
such as glider guns that generate infinitely many different states correspond
directly to programs that run forever without looping.

A final example involves tilings of the plane. Periodic tilings, which are
made up of many copies of a single repeated pattern, are like rational numbers
or looping programs. Aperiodic tilings, whose existence was only proved in
1966, are like real numbers or the third type of program: they go on forever,
but not by repeating a single pattern over and over. The original proof of
their existence involved simulating a simple computer using a set of 20,426
boring square tiles. By the 1970’s, the critical simulations had been made
simple and Roger Penrose had developed aperiodic sets of tiles that were
small (e.g. 2 tiles) and made pretty patterns. (See the internet for pictures.)
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Aside from looking cool, aperiodic tilings can have types of symmetries
that periodic tilings can’t, e.g. 10-fold rotational symmetry. In 1982, a
material science professor named Dan Shechtman observed such symmetries
in electron diffraction patterns. His discovery of these “quasicrystals” was
initially greeted with skepticism but eventually won him the Nobel prize in
2011.

20.9 Variation in notation

Authors differ as to whether the term countable includes finite sets or only
countably infinite sets.


