
Chapter 10

2-way Bounding

In high school and early college mathematics, we are often proving equalities
and we often prove them by manipulating a sequence of equalities. For
example

3x2 − 5x− 2

x− 2
=

(x− 2)(3x+ 1)

x− 2
= 3x+ 1

On more complex problems, it’s often necessary to adopt a more flexi-
ble approach: bound the quantity of interest from both directions. When
our best upper and lower bounds are equal, we’ve established an equality.
Otherwise, we’ve limited the quantity to a known (hopefully small) range.

Because we need to establish a lower bound and also an upper bound, a 2-
way bounding proof contains two sub-proofs. Sometimes the two sub-proofs
are similar. However, the true power of the technique comes from the fact
that the two sub-proofs can use entirely different techniques. Therefore, the
method is widely used when proving more difficult results, e.g. in upper-level
computer science and mathematics courses (e.g. real analysis, algorithms).

The most common error building these proofs is to omit one half entirely.
For example, someone intending to show that f(x) = k might prove that
f(x) ≤ k but forget to also prove that f(x) ≥ k. Do not do this. If one of
the bounds is obvious, say that explicitly. In this chapter, we will see how
this method works on a variety of examples.

114



CHAPTER 10. 2-WAY BOUNDING 115

10.1 Marker Making

Suppose that we have a 12” by 15” sheet of cookie dough, from which we’d
like to cut maple-leaf cookies. Scraps of dough that have been reclaimed and
re-rolled never produce results as nice as those from the original sheet, so
we’d like to pack as many cookies into our original sheet as possible. How
many cookies can we cut from this sheet?

We could experiment with cutting several sheets of dough, placing our
cookie cutters in various different ways. Suppose we managed to fit in 25
cookies on our best attempt. We now know that 25 is a lower bound on the
maximum number of cookies we can cut out. But it might be very hard to
prove we’ve found the best layout.

Now, suppose that we put our maple-leaf cutters onto graph paper and
work out that the area of each cookie is at least 6 square inches. Since our
sheet of dough has area 180 square inches, we know that it’s impossible to
cut out more than 30 cookies. So we now have an upper bound of 30 on
the number of cookies in the optimal layout. In this example, we would
normally expect our lower bound and our upper bound to be some distance
apart, because it’s so difficult to search through all the ways to arrange our
cutters.

Home kitchens do not need to worry heavily about efficiency, but indus-
trial plants do. In particular, clothing manufacturers need to createmarkers

for cutting clothing parts out of rectangles of cloth. Because the appearance
and material properties of cloth are tied to its warp direction, parts must
be lined up in specific orientations. Scrap cloth, though recyclable for other
purposes, cannot simply be reformed and re-used. Efficient markers are im-
portant, because any waste will be replicated many times, but difficult for
humans to create. So considerable effort has gone into the development of
efficient marker making algorithms.

In both engineering and in theoretical computer science, it is common
to encounter quantities that cannot be calculated directly but, rather, must
be bounded from above and below. Sometimes we can make the upper and
lower bounds meet, giving us a so-called tight bound. Often, we can’t.



CHAPTER 10. 2-WAY BOUNDING 116

10.2 Pigeonhole point placement

Here’s a problem of a very different sort, which uses 2-way bounding toegether
with the pigeonhole principle. Like so many pigeonhole proofs, the proof
depends on a non-obvious trick. In this case, it’s a trick about dividing up a
triangle. Once you’ve seen the trick, however, the proof is a classic example
of bounding a quantity from above and below.

Claim 36 Suppose that T is an equilateral triangle with sides of length 2

units We can place a maximum of four points in the triangle such that every

pair of points are more than 1 unit apart.

To show that 4 is the maximum number of points we can place with the
required separations, we need to show that it’s possible to place 4 points,
but it is not possible to place 5 points. It’s easiest to tackle these two sub-
problems separately, using different techniques.

Proof: To show that the maximum is at least four, notice that
we can place three points at the corners of the triangle and one
point in the center. The points at the corners are two units apart.
To see that the point in the center is more than one unit from
any corner, notice that the center, the corner, and the midpoint
of the side form a right triangle.

1

The hypotenuse of this triangle connects the center point to the
corner point. Since one leg of the triangle has length 1, the hy-
potenuse must have length greater than 1.



CHAPTER 10. 2-WAY BOUNDING 117

To show that the maximum number of points cannot be greater
than four, divide up the triangle into four smaller equilateral tri-
angles as follows:

Suppose we tried to place five or more points into the big trian-
gle. Since there are only four small triangles, by the pigeonhole
principle, some small triangle would have to contain at least two
points. But since the small triangle has side length only 1, these
points can’t be separated by more than one unit.

10.3 Graph coloring

A coloring of a graph G assigns a color to each node of G, with the restriction
that two adjacent nodes never have the same color. If G can be colored with
k colors, we say that G is k-colorable. The chromatic number of G, written
χ(G), is the smallest number of colors needed to color G.

For example, only three colors are required for this graph:

R G

G B

R

But the complete graph K
n
requires n colors, because each node is adja-

cent to all the other nodes. E.g. K4 can be colored as follows:



CHAPTER 10. 2-WAY BOUNDING 118

R G

B Y

To establish that n is the chromatic number for a graph G, we need to
establish two facts:

• χ(G) ≤ n: G can be colored with n colors.

• χ(G) ≥ n: G cannot be colored with less than n colors

For small finite graphs, the simplest way to show that χ(G) ≤ n is to show
a coloring of G that uses n colors. For a larger class of graphs, we could
describe an algorithm for doing the coloring. For example, we can color a
cyclic graph with an even number of nodes by alternating colors around the
circle. A bipartite graph never requires more than two colors.

Showing that χ(G) ≥ n can sometimes be equally straightforward. For
example, if the graph has any edges at all, its chromatic number must be at
least 2. If G contains a copy of K

n
, the chromatic number of G must be at

least n because K
n
can’t be colored with less than n colors.

However, the following example shows why this process can get tricky.
It’s relatively easy to color with 4 colors. But the largest complete graph in
it is K3, which gives us a lower bound of only 3. Showing that the chromatic
number is actually 4 requires carefully stepping through all possible ways to
assign three colors to the nodes and explaining why none can end with a
complete coloring.



CHAPTER 10. 2-WAY BOUNDING 119

10.4 Why care about graph coloring?

Graph coloring is required for solving a wide range of practical problems. For
example, there is a coloring algorithm embedded in most compilers. Because
the general problem can’t be solved efficiently, the implemented algorithms
use limitations or approximations of various sorts so that they can run in a
reasonable amount of time.

For example, catalog and on-line retailers frequently organize their clothes
offerings into collections, e.g. “Golfing Geezer” or “Tough but Toucheable”
or “Uniforms 4 U.” All items in a collection are guaranteed to be compatible.
This helps retailers market clothes to folks with no dress sense, as well as
cope with the fact that people are sensitive to fine color distinctions that
aren’t reproduced accurately in catalogs and on computer screens. How
many collections are required to organize the retailer’s inventory of clothes?

We can model this problem as graph coloring. Each graph node is an
item of clothing. Edges join pairs of items that aren’t compatible, e.g. the
bright green pants don’t go with the grey-orange shirt, the business formal
blouse doesn’t go with the golfing pants. The “color” on each node is the
name of a collection. If we find that too many collections are required, we
might want to remove selected items of clothing (e.g. the bottle green bell
bottoms that match nothing) from our inventory.

We can model a sudoku puzzle by setting up one node for each square.



CHAPTER 10. 2-WAY BOUNDING 120

The colors are the 9 numbers, and some are pre-assigned to certain nodes.
Two nodes are connected if their squares are in the same block or row or
column. The puzzle is solvable if we can 9-color this graph, respecting the
pre-assigned colors.

We can model exam scheduling as a coloring problem. The exams for two
courses should not be put at the same time if there is a student who is in
both courses. So we can model this as a graph, in which each course is a node
and courses are connected by edges if they share students. The question is
then whether we can color the graph with k colors, where k is the number of
exam times in our schedule.

In the exam scheduling problem, we actually expect the answer to be
“no,” because eliminating conflicts would require an excessive number of
exam times. So the real practical problem is: how few students do we have
to take out of the picture (i.e. give special conflict exams to) in order to be
able to solve the coloring problem with a reasonable value for k. We also
have the option of splitting a course (i.e. offering a scheduled conflict exam)
to simplify the graph.

A particularly important use of coloring in computer science is register
allocation. A large java or C program contains many named variables. But
a computer has a smallish number (e.g. 32) of fast registers which can feed
basic operations such as addition. So variables must be allocated to specific
registers.

The nodes in this coloring problem are variables. The colors are registers.
Two variables are connected by an edge if they are in use at the same time
and, therefore, cannot share a register. As with the exam scheduling problem,
we actually expect the raw coloring problem to fail. The compiler then uses
so-called “spill” operations to break up the dependencies and create a graph
we can color with our limited number of registers. The goal is to use as few
spills as possible.

10.5 Proving set equality

Finally, 2-way bounding proofs are often used to prove that two sets A and
B are equal. That is, we show that A ⊆ B and B ⊆ A, using separate



CHAPTER 10. 2-WAY BOUNDING 121

subproofs. We can then conclude that A = B. This looks superficially
different from the previous examples, because the relation is ⊆ rather than
≤. But the main idea is the same: we first show that A is no larger than B,
and then show that A is no smaller than B.

As an example, let’s look at

Claim 37 Let A = {15p+ 9q | p, q ∈ Z} Then A = {multiples of 3}.

Before you try to prove this, first put some sample integer values into
the formula 15p + 9q. See if you can convince yourself informally that this
formula really generates all and only multiples of 3.

Using the bounding method, we would write the proof as follows:

Proof:

(1) Show that A ⊆ {multiples of 3}.

Let x be an element of A. By the definition of A, x = 15s + 9t,
for some integers s and t. But then x = 3(5s+ 3t). 4s+ 3t is an
integer, since s and t are integers. So x is a multiple of 3.

(2) Show that {multiples of 3} ⊆ A.

Notice that (*) 15 · (−1) + 9 · 2 = 3.

Let x be a multiple of 3. Then x = 3n for some integer n.
Substituting (*) into this equation, we get x = (15 · (−1)+9 ·2)n.
So x = 15 · (−n) + 9 · (2n). So x is an element of A.

Since we’ve shown thatA ⊆ {multiples of 3} and {multiples of 3} ⊆
A, we can conclude that A = {multiples of 3}.

10.6 Variation in terminology

When coloring graphs, we have placed colors on vertices. A closely-related
set of problems involve placing colors on edges. The terms “vertex coloring”
and “edge coloring” are used when it’s necessary to distinguish the two.


