Chapter 16

NP

Some tasks definitely require exponential time. That is, we can not only dis-
play an exponential-time algorithm, but we can also prove that the problem
cannot be solved in anything less than exponential time. For example, we’ve
seen how to solve the Towers of Hanoi problem using O(2") steps. Because
the largest disk has to be put first onto the goal peg, and it can’t be moved
until everything above it is gone, any algorithm has to involve a recursive
decomposition similar to what we used in Chapter 15. So it’s impossible to
improve on the exponential time. The group of problems requiring exponen-
tial time is called EXP.

However, there is another large class of tasks where the best known algo-
rithm is exponential, but no one has proved that it is impossible to construct
a polynomial-time algorithm. This group of problems is known as NP.! It is
an important unsolved question whether the problems in NP really require
exponential time.

16.1 Finding parse trees

Suppose we are given an input sentence, such as

INP is short for “non-deterministic polynomial,” but that full name makes sense only
when you have additional theory background.

189



CHAPTER 16. NP 190

Scores of famished zombies are roaming the north end of campus.

If the sentence contains n words and we have a context-free grammar G,
it takes O(n3) time for a properly-designed parsing algorithm to find a parse
tree for the sentence or determine that none exists. However, generating all
parse trees for such a sentence takes exponential time.

To see this, consider sentences that end in a large number of prepositional
phrases, e.g.

Prof. Rutenbar killed a zombie with a red hat near the Academic
Office on the ground floor by the statue with a large sword.

When building the parse tree for such a sentence, each prepositional
phrase needs to be associated with either the main verb or with some preced-
ing noun phrase. For example, “with a large sword” might be the instrument
used to kill the zombie, in which case it should be linked with “killed” in the
parse tree. But it’s also possible that the sword is part of the description of
the statue, in which case “with a large sword” would be attached to “statue”
in the tree. No matter what you do with earlier bits of the sentence, there
are at least two possible ways to add each new phrase to the parse tree. So
if there are n prepositional phrases, there are at least 2" possible parse trees.

This example may seem silly. However, similar ambiguities occur with
other sorts of modifiers. E.g. in “wild garlic cheese,” which is wild, the garlic
or the cheese? In normal conversation, sentences tend to be short and we
normally have enough context to infer the correct interpretation, and thus
build the correct parse tree. However, explosion in the number of possible
parse trees causes real issues when processing news stories, which tend to
have long sentences with many modifiers.

16.2 What is NP?

Now, let’s look at a problem that is in NP: graph colorability. Specifically,
given a graph G and an integer k, determine whether GG can be colored with &
colors. For small graphs, it seems like this problem is quite simple. Moreover,



CHAPTER 16. NP 191

heuristics such as the greedy algorithm from Chapter 11 work well for many
larger graphs found in practical applications. However, if k& > 3, for unlucky
choices of input graph, all known algorithms take time that is exponential in
the size of the graph. However, we don’t know whether exponential time is
really required or whether there is some clever trick that would let us build
a faster algorithm.

To make the theoretical definitions easier to understand, let’s upgrade our
colorability algorithm slightly. As stated above, our colorability algorithm
needs to deliver a yes/no answer. Let’s ask our algorithm to, in addition,
deliver a justification that its answer is correct.? For example, for graph
colorability, a “yes” answer would also come with an assignment of the k
colors to the nodes of G. It’s easy to verify that such an assignment is a
legal coloring using the specified number of colors and, thus, that the “yes”
answer is correct.

The big difference between graph colorability and parse tree generation
is this ability to provide succinct, easily checked solutions with justifications.
Specifically, a computational problem is in the set NP when an algorithm
can provide justifications of “yes” answers, where each justification can be
checked in polynomial time. That is, the justification checking time is poly-
nomial in the size of the input to the algorithm (e.g. the graph G in our
colorability problem). This implies that the justification itself must be suc-
cinct, because the checker must read through it. Graph colorability is in NP.
Parse tree generation is in EXP but not in NP, because even the raw answer
without justification has exponential length.

For graph colorability, it only seems to be possible to provide succinct
justifications for “yes” answers. For “no” answers, we can sometimes give a
short and convincing explanation. But, for difficult graphs, we might have to
walk through all exponentially-many possible assignments of colors to nodes,
showing why none of them is a legal coloring. So there doesn’t seem to be a
general-purpose way to provide succinct justifications for negative answers.

Obviously, the choice of which answer is “yes” vs. “no” depends on how
we phrase the problem. Consider the non-colorability problem: given a
graph GG and an integer k, is it impossible to color G with k colors? For this
problem, we can give succinct justifications for “no” answers but apparently

2Like we force you folks to do, when answering questions on theory exams!



CHAPTER 16. NP 192

not for “yes” answers. Problems for which we can give polynomial-time
checkable justifications for negative answers are in the set co-NP.

There are some difficult problems where we can provide justifications for
both negative and positive answers. For example, there are efficient ways
to verify whether an integer is prime or not, but factoring integers is much
harder. For example, we do not know of any polynomial-time way to de-
termine whether an integer m has a factor in the range [2,n].> However,
having gone to the considerable pain of factoring m, we can provide suc-
cinct, easily-verified justifications for both “yes” and “no” answers using the
prime factorization of m. So this problem is in both NP and co-NP.

Algorithms that can be solved in polynomial time are in the set P. P is
a subset of both NP and co-NP. Theoreticians strongly suspect that these
three sets—P, NP, and co-NP—are all different. However, no one has found
a way to prove this. So it is possible that all three sets are equal, i.e. that
we’ve missed some big trick that would let us build more efficient algorithms
for the problems in NP and co-NP.

16.3 Circuit SAT

Another interesting problem in NP is satisfiability of boolean circuits. A
boolean circuit is a type of graph consisting of a set of gates connected
together by wires. Each wire carries one of the two values 0 (false) and 1
(true). The label on each gate describes how the value on its output wires
(all output wires have the same value) is determined by the values on its
input wires. For example, the output wires of an AND gate have value 1 if
both input wires have value 1, and the output wires have value 0 otherwise.

Like a logical operator, the behavior of a gate can be described by a truth
table. For simplicity, we’ll restrict ourselves to gates with one or two inputs.
A boolean circuit with any possible behavior can be built using the basic
three operators (AND, OR, NOT). However, in practical applications, it’s
common to also use other gates, e.g. XOR (exclusive OR), NAND (negation
of AND).

For example, here is a very simple boolean circuit. In this picture, inputs

3That is, polynomial in the number of digits in the input numbers.



CHAPTER 16. NP 193

are on the left and outputs on the right. For ease of understanding by
software and theory folks, the type of each gate is indicated with the name
of the operator. For serious circuit design, you’'d need to memorize the special
node shapes commonly used for different gate types.

@:@
o)

When designing circuits for practical applications, it’s important to en-
sure that the circuit really does what it is supposed to do. Or, at least,
that it doesn’t make certain critical errors that would lead to tragedy. For
example, the circuit controlling a 4-way intersection must ensure that two
crossing lanes of traffic cannot both have a green light at the same time. A
slow-moving 6-legged robot should never raise more than three of its legs at
a time. A heating system should not open the gas jet if the pilot light is off.
Significant portions of such controllers are well-modelled as boolean circuits.

To find significant design flaws in a boolean circuit, we need to determine
whether there is a set of n input values could create one of the forbidden
patterns of output values. This problem is called circuit satisfiability. There
is an obvious exponential algorithm for circuit satisfiability: if we have n
input wires, generate all 2" possible input patterns and see what happens on
the output wires. That’s too slow, so circuit testers must be content with
partial testing. However, if we determine that the bad output is possible, we
can provide a succinct easily-verified justification: show one pattern of input
values that gives rise to the bad output. So this problem is in NP.

Sadly, what we’d really like for practical applications would be easily-



CHAPTER 16. NP 194

verified justifications of negative answers. Or, equivalently, positive answers
to the the complementary problem of circuit safety: is the circuit safe from
bad outputs? This seems to be much harder than justifications for circuit
satisfiability, because proving a negative answer seems to require walking
through all exponentially many input patterns and showing why none of
them produces the bad output pattern. So circuit safety is in co-NP but
apparently not in NP.

16.4 What is NP complete?

An interesting, and very non-obvious, fact about the harder problems in
NP is that they share a common fate. It can be proven that finding a
polynomial-time algorithm for either circuit satisfiability or graph colorability
would imply that all problems in NP have polynomial-time algorithms. Such
problems are called NP-complete.

Other examples of NP complete problems include

e Propositional logic satisfiability: given an expression in propositional
logic, is there an assignment of true/false values to the variables which
would make the logic expression true?

e Clique: given an integer n and a graph G, does G contain a copy of
K,? (Brute force search is polynomial in the size of G’ but exponential
in n.)

e The Marker Making problem from Section 10.1, when rotation of parts
is not allowed.

e Vertex cover: given a graph G, find a set S of nodes in G such that
each edge of G has at least one of its endpoints in S.

e The Travelling Salesman Problem: find the shortest path through a set

of cities, visiting each city exactly once.

These problems typically remain NP-complete even when stripped down
to their bare essentials. For example, we can restrict our circuits to have



CHAPTER 16. NP 195

only a single output. We can restrict our logic expression to be the AND of
some number of 3-variable OR expressions. Or we can use only the primitive
operators/gates AND, OR, and NOT. We can restrict the shapes in Marker
Making to be rectangular. Only the most grossly simplified versions of these
problems fail to be NP-complete.

There are two techniques for showing that a problem is NP-complete.
First, we can show directly that the problem is so general that it can simulate
any other problem in NP. The details are beyond the scope of the book. But
notice that circuits are the backbone of computer construction and logic
is the backbone for constructing mathematics, so it makes sense that both
mechanisms are general and powerful. Once we have proved that some key
problems are NP-complete, we can then show that other problems are NP-
complete by showing that the new problem can simulate the basic primitives
of a problem already known to be NP-complete. For example, we might
simulate logic expressions using colored graph machinery.

16.5 Variation in notation

A justification for a positive answer can also be called a “proof,” “certificate,”
or “witness.”



