
Chapter 12

Recursive Definition

This chapter covers recursive definition, including finding closed forms.

12.1 Recursive definitions

Thus far, we have defined objects of variable length using semi-formal defi-
nitions involving . . .. For example, we defined the summation

∑
n

i=1 i by

n∑

i=1

i = 1 + 2 + 3 + . . .+ (n− 1) + n

This method is only ok when the reader can easily see what regular pattern
the . . . is trying to express. When precision is essential, e.g. when the pattern
is less obvious, we need to switch to “recursive definitions.”

Recursive function definitions in mathematics are basically similar to re-
cursive procedures in programming languages. A recursive definition defines
an object in terms of smaller objects of the same type. Because this pro-
cess has to end at some point, we need to include explicit definitions for the
smallest objects. So a recursive definition always has two parts:

• Base case or cases

137



CHAPTER 12. RECURSIVE DEFINITION 138

• Recursive formula

For example, the summation
∑

n

i=1 i can be defined as:

• g(1) = 1

• g(n) = g(n− 1) + n, for all n ≥ 2

Both the base case and the recursive formula must be present to have a
complete definition. However, it is traditional not to explicitly label these two
pieces. You’re just expected to figure out for yourself which parts are base
case(s) and which is the recursive formula. The input values are normally
assumed to be integers.

The true power of recursive definition is revealed when the result for
n depends on the results for more than one smaller value, as in the strong
induction examples. For example, the famous Fibonacci numbers are defined:

• F0 = 0

• F1 = 1

• Fi = Fi−1 + Fi−2, ∀i ≥ 2

So F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34. It
isn’t at all obvious how to express this pattern non-recursively.

12.2 Finding closed forms

Many recursive numerical formulas have a closed form, i.e. an equivalent
expression that doesn’t involve recursion (or summation or the like). Some-
times you can find the closed form by working out the first few values of
the function and then guessing the pattern. More often, you need to use
an organized technique. The simplest technique for finding closed forms is
called “unrolling.”

For example, suppose we have a function T : N → Z defined by



CHAPTER 12. RECURSIVE DEFINITION 139

T (1) = 1

T (n) = 2T (n− 1) + 3, ∀n ≥ 2

The values of this function are T (1) = 1, T (2) = 5, T (3) = 13, T (4) = 29,
T (5) = 61. It isn’t so obvious what the pattern is.

The idea behind unrolling is to substitute a recursive definition into itself,
so as to re-express T (n) in terms of T (n− 2) rather than T (n− 1). We keep
doing this, expressing T (n) in terms of the value of T for smaller and smaller
inputs, until we can see the pattern required to express T (n) in terms of n
and T (0). So, for our example function, we would compute:

T (n) = 2T (n− 1) + 3

= 2(2T (n− 2) + 3) + 3

= 2(2(2T (n− 3) + 3) + 3) + 3

= 23T (n− 3) + 22 · 3 + 2 · 3 + 3

= 24T (n− 4) + 23 · 3 + 22 · 3 + 2 · 3 + 3

. . .

= 2kT (n− k) + 2k−1 · 3 + . . .+ 22 · 3 + 2 · 3 + 3

The first few lines of this are mechanical substitution. To get to the last line,
you have to imagine what the pattern looks like after k substitutions.

We can use summation notation to compactly represent the result of the
kth unrolling step:

T (n) = 2kT (n− k) + 2k−1 · 3 + . . .+ 22 · 3 + 2 · 3 + 3

= 2kT (n− k) + 3(2k−1 + . . .+ 22 + 2 + 1)

= 2kT (n− k) + 3

k−1∑

i=0

(2i)



CHAPTER 12. RECURSIVE DEFINITION 140

Now, we need to determine when the input to T will hit the base case. In
our example, the input value is n− k and the base case is for an input of 1.
So we hit the base case when n − k = 1. i.e. when k = n − 1. Substituting
this value for k back into our equation, and using the fact that T (1) = 1, we
get

T (n) = 2kT (n− k) + 3

k−1∑

i=0

(2i)

= 2n−1T (1) + 3

n−2∑

i=0

(2i)

= 2n−1 + 3
n−2∑

k=0

(2k)

= 2n−1 + 3(2n−1 − 1) = 4(2n−1)− 3 = 2n+1 − 3

So the closed form for this function is T (n) = 2n+1 − 3. The unrolling
process isn’t a formal proof that our closed form is correct. However, we’ll
see below how to write a formal proof using induction.

12.3 Divide and conquer

Many important algorithms in computer science involve dividing a big prob-
lem of (integer) size n into a sub-problems, each of size n/b. This general
method is called “divide and conquer.” Analyzing such algorithms involves
recursive definitions that look like:

S(1) = c

S(n) = aS(⌈n/b⌉) + f(n), ∀n ≥ 2

The base case takes some constant amount of work c. The term f(n) is
the work involved in dividing up the big problem and/or merging together



CHAPTER 12. RECURSIVE DEFINITION 141

the solutions for the smaller problems. The call to the ceiling function is
required to ensure that the input to S is always an integer.

Handling such definitions in full generality is beyond the scope of this
class.1 So let’s consider a particularly important special case: dividing our
problem into two half-size problems, where the dividing/merging takes time
proportional to the size of the problem. And let’s also restrict our input n
to be a power of two, so that we don’t need to use the ceiling function. We
then get a recursive definition that looks like:

S(1) = c

S(n) = 2S(n/2) + n, ∀n ≥ 2 (n a power of 2)

Unrolling this, we get

S(n) = 2S(n/2) + n

= 2(2S(n/4) + n/2) + n

= 4S(n/4) + n+ n

= 8S(n/8) + n+ n+ n

. . .

= 2iS(
n

2i
) + in

We hit the base case when n

2i
= 1 i.e. when i = log n (i.e. log base 2,

which is the normal convention for algorithms applications). Substituting in
this value for i and the base case value S(1) = c, we get

S(n) = 2iS(
n

2i
) + in = 2lognc+ n log n = cn + n logn

So the closed form for S(n) is cn + n logn.

In real applications, our input n might not be a power of 2, so our actual
recurrence might look like:

1See any algorithms text for more details.



CHAPTER 12. RECURSIVE DEFINITION 142

S(1) = c

S(n) = 2S(⌈n/2⌉) + n, ∀n ≥ 2

We could extend the details of our analysis to handle the input values that
aren’t powers of 2. In many practical contexts, however, we are only inter-
ested in the overall shape of the function, e.g. is it roughly linear? cubic?
exponential? So it is often sufficient to note that S is increasing, so values
of S for inputs that aren’t powers of 2 will lie between the values of S at the
adjacent powers of 2.

12.4 Hypercubes

Non-numerical objects can also be defined recursively. For example, the
hypercube Qn is the graph of the corners and edges of an n-dimensional
cube. It is defined recursively as follows (for any n ∈ N):

Q0 is a single node with no edges

Qn consists of two copies of Qn−1 with edges joining corresponding
nodes, for any n ≥ 1.

That is, each node vi in one copy of Qn−1 is joined by an edge to its clone
copy v′

i
in the second copy of Qn−1. Q0, Q1, Q2, and Q3 look as follows. The

node labels distinguish the two copies of Qn− 1

A A

B

A

A

B

B A

A

A

A

B

B

B

B

The hypercube defines a binary coordinate system. To build this coordi-
nate system, we label nodes with binary numbers, where each binary digit



CHAPTER 12. RECURSIVE DEFINITION 143

corresponds to the value of one coordinate. The edges connect nodes that
differ in exactly one coordinate.

011

010

001

000

111

110

101

100

Qn has 2n nodes. To compute the number of edges, we set up the following
recursive definition for the number of edges E(n) in the Qn:

E(0) = 0

E(n) = 2E(n− 1) + 2n−1, for all n ≥ 1

The 2n−1 term is the number of nodes in each copy of Qn−1, i.e. the number
of edges required to join corresponding nodes. We’ll leave it as an exercise
to find a closed form for this recursive definition.

12.5 Proofs with recursive definitions

Recursive definitions are ideally suited to inductive proofs. The main out-
line of the proof often mirrors the structure of the recursive definition. For
example, let’s prove the following claim about the Fibonacci numbers:

Claim 44 For any n ≥ 0, F3n is even.

Let’s check some concrete values: F0 = 0, F3 = 2, F6 = 8, F9 = 34. All
are even. Claim looks good. So, let’s build an inductive proof:

Proof: by induction on n.

Base: F0 = 0, which is even.



CHAPTER 12. RECURSIVE DEFINITION 144

Induction: Suppose that F3n is even for n = 0, 1, . . . , k. We need
to show that F3k is even. We need to show that that F3(k+1) is
even.

F3(k+1) = F3k+3 = F3k+2 + F3k+1

But F3k+2 = F3k+1+F3k. So, substituting into the above equation,
we get:

F3(k+1) = (F3k+1 + F3k) + F3k+1 = 2F3k+1 + F3k

By the inductive hypothesis F3k is even. 2F3k+1 is even because
it’s 2 times an integer. So their sum must be even. So F3(k+1) is
even, which is what we needed to show.

Some people feel a bit uncertain if the base case is a special case like zero.
It’s ok to also include a second base case. For this proof, you would check the
case for n = 1 i.e. verify that F3 is even. The extra base case isn’t necessary
for a complete proof, but it doesn’t cause any harm and may help the reader.

12.6 Inductive definition and strong induc-

tion

Claims involving recursive definitions often require proofs using a strong
inductive hypothesis. For example, suppose that the function f : N → Z is
defined by

f(0) = 2

f(1) = 3

∀n ≥ 1, f(n+ 1) = 3f(n)− 2f(n− 1)

I claim that:

Claim 45 ∀n ∈ N, f(n) = 2n + 1

We can prove this claim as follows:



CHAPTER 12. RECURSIVE DEFINITION 145

Proof: by induction on n.

Base: f(0) is defined to be 2. 20+1 = 1+1 = 2. So f(n) = 2n+1
when n = 0.

f(1) is defined to be 3. 21 + 1 = 2 + 1 = 3. So f(n) = 2n + 1
when n = 1.

Induction: Suppose that f(n) = 2n + 1 for n = 0, 1, . . . , k.

f(k + 1) = 3f(k)− 2f(k − 1)

By the induction hypothesis, f(k) = 2k+1 and f(k−1) = 2k−1+1.
Substituting these formulas into the previous equation, we get:

f(k+1) = 3(2k+1)−2(2k−1+1) = 3 ·2k+3−2k−2 = 2 ·2k+1 =
2k+1 + 1

So f(k + 1) = 2k+1 + 1, which is what we needed to show.

We need to use a strong induction hypothesis, as well as two base cases,
because the inductive step uses the fact that the formula holds for two pre-
vious values of n (k and k − 1).

12.7 Variation in notation

Recursive definitions are sometimes called inductive definitions or (especially
for numerical functions) recurrence relations. Folks who call them “recur-
rence relations” typically use the term “initial condition” to refer to the base
case.


