
Chapter 1

Math review

This book assumes that you understood precalculus when you took it. So you
used to know how to do things like factoring polynomials, solving high school
geometry problems, using trigonometric identities. However, you probably
can’t remember it all cold. Many useful facts can be looked up (e.g. on the
internet) as you need them. This chapter reviews concepts and notation that
will be used a lot in this book, as well as a few concepts that may be new
but are fairly easy.

1.1 Some sets

You’ve all seen sets, though probably a bit informally. We’ll get back to some
of the formalism in a couple weeks. Meanwhile, here are the names for a few
commonly used sets of numbers:

• Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the integers.

• N = {0, 1, 2, 3, . . .} is the non-negative integers, also known as the
natural numbers.

• Z+ = {1, 2, 3, . . .} is the positive integers.

• R is the real numbers
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• Q is the rational numbers

• C is the complex numbers

Notice that a number is positive if it is greater than zero, so zero is not
positive. If you wish to exclude negative values, but include zero, you must
use the term “non-negative.” In this book, natural numbers are defined to
include zero. Notice also that the real numbers contain the integers, so a
“real” number is not required to have a decimal part. And, finally, infinity
is not a number in standard mathematics.

Remember that the rational numbers are the set of fractions p

q
where q

can’t be zero and we consider two fractions to be the same number if they
are the same when you reduce them to lowest terms.

The real numbers contain all the rationals, plus irrational numbers such
as

√
2 and π. (Also e, but we don’t use e much in this end of computer

science.) We’ll assume that
√
x returns (only) the positive square root of x.

The complex numbers are numbers of the form a+ bi, where a and b are
real numbers and i is the square root of -1. Some of you from ECE will be
aware that there are many strange and interesting things that can be done
with the complex numbers. We won’t be doing that here. We’ll just use
them for a few examples and expect you to do very basic things, mostly easy
consequences of the fact that i =

√
−1.

If we want to say that the variable x is a real, we write x ∈ R. Similarly
y 6∈ Z means that y is not an integer. In calculus, you don’t have to think
much about the types of your variables, because they are largely reals. In
this class, we handle variables of several different types, so it’s important to
state the types explicitly.

It is sometimes useful to select the real numbers in some limited range,
called an interval of the real line. We use the following notation:

• closed interval: [a, b] is the set of real numbers from a to b, including a

and b

• open interval: (a, b) is the set of real numbers from a to b, not including
a and b
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• half-open intervals: [a, b) and (a, b] include only one of the two end-
points.

1.2 Pairs of reals

The set of all pairs of reals is written R2. So it contains pairs like (−2.3, 4.7).
Similarly, the set R3 contains triples of reals such as 8, 7.3,−9. In a computer
program, we implement a pair of reals using an object or struct with two
fields.

Suppose someone presents you with a pair of numbers (x, y) or one of the
corresponding data structures. Your first question should be: what is the
pair intended to represent? It might be

• a point in 2D space

• a complex number

• a rational number (if the second coordinate isn’t zero)

• an interval of the real line

The intended meaning affects what operations we can do on the pairs.
For example, if (x, y) is an interval of the real line, it’s a set. So we can write
things like z ∈ (x, y) meaning z is in the interval (x, y). That notation would
be meaningless if (x, y) is a 2D point or a number.

If the pairs are numbers, we can add them, but the result depends on
what they are representing. So (x, y) + (a, b) is (x + a, y + b) for 2D points
and complex numbers. But it is (xb+ ya, yb) for rationals.

Suppose we want to multiply (x, y)×(a, b) and get another pair as output.
There’s no obvious way to do this for 2D points. For rationals, the formula
would be (xa, yb), but for complex numbers it’s (xa− yb, ya+ xb).

Stop back and work out that last one for the non-ECE students, using
more familiar notation. (x+yi)(a+ bi) is xa+yai+xbi+ byi2. But i2 = −1.
So this reduces to (xa− yb) + (ya+ xb)i.
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Oddly enough, you can also multiply two intervals of the real line. This
carves out a rectangular region of the 2D plane, with sides determined by
the two intervals.

1.3 Exponentials and logs

Suppose that b is any real number. We all know how to take integer powers
of b, i,e. bn is b multiplied by itself n times. It’s not so clear how to precisely
define bx, but we’ve all got faith that it works (e.g. our calculators produce
values for it) and it’s a smooth function that grows really fast as the input
gets bigger and agrees with the integer definition on integer inputs.

Here are some special cases to know

• b0 is one for any b.

• b0.5 is
√
b

• b−1 is 1
b

And some handy rules for manipulating exponents:

bxby = bx+y

axbx = (ab)x

(bx)y = bxy

b(x
y) 6= (bx)y

Suppose that b > 1. Then we can invert the function y = bx, to get the
function x = logb y (“logarithm of y to the base b”). Logarithms appear
in computer science as the running times of particularly fast algorithms.
They are also used to manipulate numbers that have very wide ranges, e.g.
probabilities. Notice that the log function takes only positive numbers as
inputs. In this class, log x with no explicit base always means log2 x because
analysis of computer algorithms makes such heavy use of base-2 numbers and
powers of 2.
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Useful facts about logarithms include:

blogb(x) = x

logb(xy) = logb x+ logb y

logb(x
y) = y logb x

logb x = loga x logb a

In the change of base formula, it’s easy to forget whether the last term
should be logb a or loga b. To figure this out on the fly, first decide which of
logb x and loga x is larger. You then know whether the last term should be
larger or smaller than one. One of logb a and loga b is larger than one and
the other is smaller: figure out which is which.

More importantly, notice that the multiplier to change bases is a con-
stant, i.e doesn’t depend on x. So it just shifts the curve up and down
without really changing its shape. That’s an extremely important fact that
you should remember, even if you can’t reconstruct the precise formula. In
many computer science analyses, we don’t care about constant multipliers.
So the fact that base changes simply multiply by a constant means that we
frequently don’t have to care what the base actually is. Thus, authors often
write log x and don’t specify the base.

1.4 Some handy functions

The factorial function may or may not be familiar to you, but is easy to
explain. Suppose that k is any positive integer. Then k factorial, written k!,
is the product of all the positive integers up to and including k. That is

k! = 1 · 2 · 3 · . . . · (k − 1) · k

For example, 5! = 1 · 2 · 3 · 4 · 5 = 120. 0! is defined to be 1.

The max function returns the largest of its inputs. For example, suppose
we define f(x) = max(x2, 7). Then f(3) = 9 but f(2) = 7. The min function
is similar.
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The floor and ceiling functions are heavily used in computer science,
though not in many areas other of science and engineering. Both functions
take a real number x as input and return an integer near x. The floor func-
tion returns the largest integer no bigger than x. In other words, it converts
x to an integer, rounding down. This is written ⌊x⌋. If the input to floor
is already an integer, it is returned unchanged. Notice that floor rounds
downward even for negative numbers. So:

⌊3.75⌋ = 3

⌊3⌋ = 3

⌊−3.75⌋ = −4

The ceiling function, written ⌈x⌉, is similar, but rounds upwards. For
example:

⌈3.75⌉ = 4

⌈3⌉ = 3

⌈−3.75⌉ = −3

Most programming languages have these two functions, plus a function
that rounds to the nearest integer and one that “truncates” i.e. rounds
towards zero. Round is often used in statistical programs. Truncate isn’t
used much in theoretical analyses.

1.5 Summations

If ai is some formula that depends on i, then

n∑

i=1

ai = a1 + a2 + a3 + . . .+ an

For example

n∑

i=1

1

2i
=

1

2
+

1

4
+

1

8
. . .+

1

2n
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Products can be written with a similar notation, e.g.

n∏

k=1

1

k
=

1

1
· 1
2
· 1
3
· . . . · 1

n

Certain sums can be re-expressed “in closed form” i.e. without the sum-
mation notation. For example:

n∑

i=1

1

2i
= 1− 1

2n

In Calculus, you may have seen the infinite version of this sum, which
converges to 1. In this class, we’re always dealing with finite sums, not
infinite ones.

If you modify the start value, so we start with the zeroth term, we get
the following variation on this summation. Always be careful to check where
your summation starts.

n∑

i=0

1

2i
= 2− 1

2n

Many reference books have tables of useful formulas for summations that
have simple closed forms. We’ll see them again when we cover mathematical
induction and see how to formally prove that they are correct.

Only a very small number of closed forms need to be memorized. One
example is

n∑

i=1

i =
n(n+ 1)

2

Here’s one way to convince yourself it’s right. On graph paper, draw a
box n units high and n+1 units wide. Its area is n(n+1). Fill in the leftmost
part of each row to represent one term of the summation: the left box in the
first row, the left two boxes in the second row, and so on. This makes a little
triangular pattern which fills exactly half the box.
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1.6 Strings

You’ve probably seen strings in introductory programming, e.g. when pro-
cessing input from the user or a disk file. In computer science, a string is a
finite-length sequence of characters and its length is the number of characters
in it. E.g. pineapple is a string of length 9.

The special symbol ǫ is used for the string containing no characters, which
has length 0. Zero-length strings may seem odd, but they appear frequently
in computer programs that manipulate text data. For example, a program
that reads a line of input from the keyboard will typically receive a zero-
length string if the user types ENTER twice.

We specify concatenation of strings, or concatenation of strings and indi-
vidual characters, by writing them next to each other. For example, suppose
that α = blue and β = cat. Then αβ would be the string bluecat and βs

be the string cats.

A bit string is a string consisting of the characters 0 and 1. If A is a
set of characters, then A∗ is the set of all (finite-length) strings containing
only characters from A. For example, if A contains all lower-case alphabetic
characters, then A∗ contains strings like e, onion, and kkkkmmmmmbb. It also
contains the empty string ǫ.

Sometimes we want to specify a pattern for a set of similar strings. We
often use a shorthand notation called regular expressions. These look much
like normal strings, but we can use two operations:

• a | b means either one of the characters a and b.

• a∗ means zero or more copies of the character a.

Parentheses are used to show grouping.

So, for example, ab∗ specifies all strings consisting of an a followed by
zero or more b’s: a, ab, abb, and so forth. c(b | a)∗c specifies all strings
consisting of one c, followed by zero or more characters that are either a’s or
b’s, followed one c. E.g. cc, cac, cbbac, and so forth.
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1.7 Variation in notation

Mathematical notation is not entirely standardized and has changed over the
years, so you will find that different subfields and even different individual
authors use slightly different notation. These “variation in notation” sections
tell you about synonyms and changes in notation that you are very likely to
encounter elsewhere. Always check carefully which convention an author is
using. When doing problems on homework or exams for a class, follow the
house style used in that particular class.

In particular, authors differ as to whether zero is in the natural numbers.
Moreover,

√
−1 is named j over in ECE and physics, because i is used for

current. Outside of computer science, the default base for logarithms is
usually e, because this makes a number of continuous mathematical formulas
work nicely (just as base 2 makes many computer science formulas work
nicely).

In standard definitions of the real numbers and in this book, infinity is not
a number. People are sometimes confused because ∞ is sometimes used in
notation where numbers also occur, e.g. in defining limits in calculus. There
are non-standard number systems that include infinite numbers. And points
at infinity are sometimes introduced in discussions of 2D and 3D geometry.
We won’t make use of such extensions.

Regular expressions are quite widely used in both theory and practical
applications. As a result there are many variations on the notation. There are
also other operations that make it easy to specify a wider range of patterns.


