Instructor Guide
for
Building Blocks, for version 1.3

Margaret M. Fleck

July 24, 2013



Chapter 1

Introduction

Like the textbook, this guide is intended to be succinct. I'll assume that you
know how to flesh out the basic ideas in this guide using your own favorite
style of presentation, using examples from a range of sources (including what
we have on-line at Illinois), and so forth.

1.1 Ouwur students

This book was designed for students with one term of programming and one
term of calculus. We make very little direct use of calculus, but it helps to en-
sure an acceptable level of fluency with pre-calculus. There is a large change
of topic and emphasis between this course and the calculus sequence. So
some students have acceptable grades in the immediate prerequisite courses
but still prove to have poor fluency with pre-calculus and/or simply find the
proof material very difficult. See Section 77 below for suggestions about
where these weaker students need help.

The past few decades have seen significant changes in the K-12 and early
college math curriculum. Proofs have been de-emphasized, especially in the
calculus sequence. But they are more likely to have already seen informal
versions of Venn diagrams, summations, and counting formulas. They are
experts at tracking down facts on the web, so we must be more creative
when constructing homework problems, but textbooks no longer need to



CHAPTER 1. INTRODUCTION 2

compulsively include all relevant information.

This book is primarily aimed at students who are interested in applica-
tions, not foundations. In other words, students who are often dramatically
different from what you were like in college. Part of the challenge teaching
this material is to put yourself in the shoes of your former classmates, es-
pecially the ones who struggled to survive their theory courses. We need to
devote significant time helping them understand basic ideas that you found
obvious.

When teaching the small minority of CS majors with a strong interest in
mathematical foundations, you will want to supplement this book with ma-
terials aimed at young theoreticians. See the bibliography for some starting
suggestions. Also mathematics departments typically offer courses for math
majors that would interest them.

Because we're going light on the foundational side, we introduce some
concepts before formally defining them. In some cases, e.g. the real numbers,
we never define them. (CS theory courses rarely do.) In the case of some
other concepts, e.g. equivalence classes or the irrationality of v/2, the concept
is introduced early but the proof details are delayed until they have enough
of a grip to appreciate them.

1.2 General approach

Because most of our students find proofs and logic challenging, this book
spreads the difficult proof and logic concepts out over the entire term. The
idea is to introduce these pieces at a measured pace, so that students are
able to fully absorb each piece as it appears. Especially in the early sections
it takes self-discipline to present only a simple account, without bringing up
the more difficult issues.

In particular, many students require considerable practice to learn to
write straightforward direct proofs. Until they have good fluency with direct
proof, they aren’t able to successfully build more complex proof outlines such
as induction. Introducing proof by contradiction too early creates confusion
about logical order. Moreover, many students write broken or complex con-
tradiction proofs when direct proof or a counter-example would have been



CHAPTER 1. INTRODUCTION 3

simpler. So we delay presenting contradiction until chapter 17.

Other key logic/proofs topics moved later include vacuous truth (in Chap-
ter 5), nested unlike quantifiers (Chapter 7), and proving an equality via two
inequalities (Chapter 10). Circuits and logic have an obvious relationship
but the main challenges in building elementary proofs involve concepts that
are not shared with elementary circuit presentations: quantifiers and if/then
statements. So the connection between logic and circuits is left until Chap-
ter 16 (NP).

For related reasons, the model proofs in the book and lecture use very
straightforward, somewhat verbose, versions of standard outlines. That’s
probably not your natural style. It isn’t even mine. And the students won’t
write that way in later classes, when they get more fluent. But a simpler
style is helpful to beginners.

We also cover a wide range of structures that are not especially difficult
for the students, except insofar as we ask them to do proofs. These structures
are introduced relatively early. This lets us use a more interesting range of
examples to illustrate proof and logic ideas. Some of these structures occur
in a very wide range of variations and applications. To avoid overwhelming
students with “laundry list” lectures, we present only a sampling of the
possibilities and spread them over a number of chapters. Coverage of graphs,
in particular, is spread out over much of the book.



Chapter 2

Topics by Lecture

Material from the textbook divides roughly into three categories.

e The key ideas, the central topics for lectures.

e Routine definitions and examples: we have students read much of this
on their own, with the aid of on-line drill problems.

e Harder examples and concepts, which need attention in lecture.

I'll discuss the content primarily in terms of lecture content. But it fol-
lows naturally that key lecture topics would then be practiced in discussion
sections, with on-line drill problems, and on homeworks.

Because it’s easiest to do this in concrete terms, the following is based on
my lectures at U. Illinois. You should adapt this as necessary. Each of our
lectures is 75 minutes long and there are two lectures per week. Our term
has 29 lecture periods, of which two are eaten up by midterm exams and one
is often lost to some misadventure (e.g. weather, loss of power).

The first third (about 11 lectures)

The first third of the course, Chapters 1-10, is about direct proof. Students
learn to understand basic mathematical and logical constructs. They learn

4



CHAPTER 2. TOPICS BY LECTURE 3

to correct interpret definitions involving logical operators, notably quantifiers
and implication. And they learn to get from assumptions to conclusions in
logical order.

This basic material tends to seem obvious to instructors. And the top
part of the class will pick up on the methods quickly. However, much of the
class finds these basic methods challenging. So we take the material slowly,

using a variety of topic changes to keep them practicing the same underlying
skills.

Introduction (1 lecture)

The first lecture tends to be heavily concerned with administrative matters,
which vary heavily with the term and the instructor. The first lecture might
also give an overview and motivation.

Chapter 1 (Math review) contains material that should be largely famil-
iar and, when not familiar, easy for properly prepared students. We have
students read this on their own during the first two weeks and use on-line
problems to help identify students with insufficient preparation.

Chapters 2-3: Logic and Proofs (3 lectures)

The goal is to cover only basic notation and concepts of logic plus basic direct
proofs. So these two chapters should take only about 3 lectures. Don’t get
bogged down. Over the course of many chapters, we’ll get more practice with
these basics and also return to examine difficult topics.

These topics might break down into lectures as

e Lecture 1: Propositional logic
e Lecture 2: Predicates and basic proof outlines

e Lecture 3: More examples of proofs



CHAPTER 2. TOPICS BY LECTURE 6

Key topics for lecture 1 include the meaning of if/then and mechanical
construction of negations and contrapositives. Also emphasize using precise
mathematical English to make things readable: students tend to overuse
shorthand. Much of the rest of propositional logic is well-handled by self-
study drill problems. Mechanical drill problems are an excellent way to force
students to pay attention to the (fairly easy) details of mechanical negation
and contrapositive formation, which they need to have memorized to succeed
later in the term.

The main focus of lecture 2 is a basic account of quantifiers and the four
cases (Section 3.7) of how to prove/disprove quantified statements. Don’t
neglect (counter-)examples: even strong students often try to build general
arguments or abstract examples where a simple very concrete example would
suffice. In working through examples, include examples of forming negations
and contrapositives of statements with quantifiers, recapping and extending
the topic from lecture 1. Also emphasize how to apply definitions: using the
definition in the form given, introducing fresh variable names when needed
to avoid aliasing.

Notice that finding counter-examples is not the same skill as mechanical
negation. When asked to negate a statement and also find a counter-example
to it, students give answers that are only loosely coupled.

The nominal topics of Lecture 3 are two minor variations on direct proof:
proof by cases, and proof by contrapositive. The more important hidden
agenda is to re-iterate the basic methods introduced in lecture 2, using longer
and more complex examples, and covering any small points that got missed in
lecture 2. Because we are starting to see longer examples, we also introduce
the idea of constructing proofs in two drafts.

Previous classes require students to show work, but do not emphasize
readable presentation or logical order. In fact, they apparently teach a result-
checking method which is basically backwards from logical order. Now and
for the next several chapters, it is critical to emphasize setting up the starting
assumptions for the proof and the desired end goal of the proof, each time
you do a proof, to help them get a clear grip on the required order for their
steps. Your lecture examples should model what you want their submissions
to look like, e.g. full written-out connector words.

In previous math classes, students have typically written out their answers



CHAPTER 2. TOPICS BY LECTURE 7

in one draft, partly because they found the material easy and partly because
clear presentation was not emphasized. So they must be told explicitly about
using two drafts, using scratch paper, and/or writing the goal of the proof
at the bottom of the page, leaving space to fill in the connecting steps later.
Model these construction methods as you build proofs in lecture, now and for
the rest of the term. Avoid writing the goal right after the assumptions are
introduced (e.g. “We need to show XXX") because this muddies the logical
order at a point when some students are very easily confused. Put the goal
at the bottom of the page or over to the side or on your scratch paper.

Chapter 4: Number theory (2 lectures)

This chapter is primarily an excuse to practice our proof techniques from
Chapter 3. Students need the practice. So the number theory content is
kept fairly simple. We cover this in two lectures.

e Lecture 1: divides, remainder, and the Euclidean algorithm.
e Lecture 2: congruence mod k, modular arithmetic, and equivalence/congruence

classes.

Some important methods to model as you work examples. The first three
are review from earlier; the last is new.

building proofs by working from both ends towards the middle

applying definitions as written

disproving conjectures with concrete counter-examples

testing conjectures and exploring definitions by plugging small values
into their defining equations

The Euclidean Algorithm is a convenient organizing focus for Lecture 1.
The lemmas required to prove it correct are good examples of proofs using
the definitions of divides and remainder.



CHAPTER 2. TOPICS BY LECTURE 8

Lecture 2 needs to cover congruence mod k, include an example proof
using its formal definition. It introduces equivalence classes. Keep this pre-
formal: we’re just getting them used to the idea of treating a group of objects
as a single object. Formal details will be done in Chapters 6 and 18.

In lecture 2, we also learn to do practical computations with modular
numbers. It’s fun to do some examples where the naive method would pro-
duce extremely large intermediate results, but smarter approaches can keep
all the numbers small. E.g. computation of large powers by repeated dou-
bling.

Chapter 5: Sets (1 lecture)

This chapter contains a lot of routine material, already somewhat familiar to
students. This is a good application for on-line drill questions and does not
require much attention in lecture. The big new ideas, which require about
one lecture, are

e sect-builder notation
e vacuous truth

e proving a subset inclusion

A bit of lecture time can also be devoted to common confusions with set
notation and the recap of proof by contrapositive (section 5.13).

In this chapter, we keep the notational and conceptual issues simple by
never nesting sets inside other sets. (Nested sets will be covered in Chap-
ter 18.) So they tend to have problems such as confusing C with €, or 3 and
{3}, or {7,12} with (7,12). And with set-builder notation, which they find
somewhat complicated. It is probably their first exposure to the method of
generate and test.

Vacuous truth is well known to be mysterious and counter-intuitive. They
will feel confused and need to know that they are not alone in their confusion.
Do not expect full understanding immediately. We will spend more time
practicing with vacuous truth in Chapter 6.



CHAPTER 2. TOPICS BY LECTURE 9

Students are curiously reluctant to prove a subset relationship by the
intended method: choose an element from the smaller set and show it lives
in the larger set. Try to use concrete examples (e.g. as in section 5.10) so that
the proofs look less like abstract nonsense. Tell them directly what outline
they must use, otherwise they will make ill-advised attempts to improvise
outlines ad hoc.

At this stage, it does not work to ask them to prove a set equality via
two subset inclusions. This requires applying two distinct ideas, neither one
of which is easy for them. Many students simply give up on the intended
outline. So, right now, concentrate on getting them to do the proof correctly
in one direction. Forcing equality via bounds from two directions will be
covered in Chapter 10.

Chapter 6: Relations (1 lecture)

We discuss only relations on a single set. To keep the emphasis on the ideas
rather than the notation, we make heavy use of pictures, i.e. treating these
relations as directed graphs. We use on-line drill to get students on top of the
easier relations concepts (e.g. reflexive). The single lecture revolves around
three ideas that we have seen previously:

e vacuous truth
e proof by contrapositive

e two differently named variables might be equal (aliasing)

These ideas help us focus an analysis of the two definitions that cause the
most conceptual difficulty and involve the most interesting proofs: transitiv-
ity and antisymmetry. We practice testing these properties and doing proofs
on example relations.

One challenge here is that many students are still shaky on writing direct
proofs, particularly the strategy of writing both ends first and then working
to bridge the gap in the middle, Keep explicitly modelling the process of
building the proof, not just your finished in-order product. A strong grip on



CHAPTER 2. TOPICS BY LECTURE 10

these skills now will make the later parts of the course much more pleasant
for everyone.

Another challenge is that students are reluctant to try the recommended
outline for a proof of antisymmetry. One issue is probably that they find it
odd to set up two named variables that will turn out to be equal. It’s impor-
tant that they get comfortable with this pattern, because this aliasing idea
is also used when manipulating equivalence classes, when proving a function
to be one-to-one, and when manipulating pointer-based data structures.

It’s good to do an example of a full equivalence class proof, i.e. including
the extremely short subproofs of reflexive and symmetric. It’s also good to
include and talk through more examples of equivalence classes. We're still
not doing all the formal details, e.g. partitions are left until Chapter 18.

Chapters 7-8: Functions (2 lectures)

Students think they understand functions from previous math classes. How-
ever, these classes have taught them a dangerously limited model of functions:
real-number functions with succinct formulas. We need to upgrade this to a
proper understanding of the wide range of possible functions.

First, we emphasize small discrete examples with no overt formula, e.g.
using bubble diagrams, making it as hard as possible to try to work via
formulas. We also make excuses to count the number of possible functions.
We need them to understand that they can freely pair any output with any
input and, therefore, that there are a vast range of possible functions. They
need to appreciate the vastness of the possibilities in order to understand
uncountability /uncomputability later.

Second, we must teach them to pay attention to type signatures and,
especially, the declared input and output sets (domain and co-domain). Em-
phasize which set is which and emphasize the directions of arrows in bubble
diagrams. Make clear the distinction between co-domain and image.

It takes about two lectures to cover functions, one lecture for each chapter.
Main topics for the first lecture are

e What is “onto”?



CHAPTER 2. TOPICS BY LECTURE 11
e Understanding nested quantifiers

Nested quantifiers are well-known to be hard: don’t count on full un-
derstanding from this first introduction. Because of this, teach the idea of
“onto” by looking at whole sets (image vs. co-domain) rather than via the
formal definition.

The second lecture covers

e what is one-to-one?
e pigeonhole principle

e compare set sizes by making functions

Proving a function one-to-one involves the same two ideas that we used
for antisymmetric proofs in Chapter 6: contrapositive and aliasing. Using
functions to compare the sizes of finite sets is an important first step towards
understanding the later discussion of uncountability.

Pigeonhole proofs tend to be “trick” proofs, even if you try to select
simpler examples. It helps to tell this to the students, so they don’t get
discouraged. On homework, it can also help to let them select (say) two
problems from a set of three, in case they don’t see the trick to one of them.

This early coverage of functions does not cover functions whose inputs or
outputs are sets. Moreover, we don’t cover the formal definition of a function
as a set of pairs. We pick up these more difficult topics in Chapters 18 and
19.

Chapter 9: Graphs (1.33 lectures)

This chapter covers only the basics of (simple undirected) graphs. Undirected
graphs are used as a continuing source of examples throughout the rest of the
book. Directed graphs were introduced in Chapter 6 and will appear again
in Chapter 19. But there is a wide range of graph concepts that we don’t
have time to cover: these make excellent source materials for class examples
and homework problems.



CHAPTER 2. TOPICS BY LECTURE 12

The main hard concept is graph isomorphism, which takes about one
lecture to cover. When we’re comparing two graphs for isomorphism, they
need to understand that the geometry of the graph picture doesn’t matter,
e.g. that vertices can be moved and edges bent. And, on the other hand,
that edges need to move with the vertices they connect.

We typically ask them to count the number of isomorphisms between
two graphs (easier), or from a graph to itself (harder). This requires under-
standing isomorphism and also organizing one’s work to clearly describe the
constraints involved.

We also look at how local features can be used to show that two graphs
are not isomorphic or to constrain the search for isomorphisms. Common
misunderstandings often involve the direction of the implications involved.
For example, some students think that vertices of the same degree can be
freely mapped to one another when, in fact, matching degrees is necessary
but not sufficient.

This chapter also introduces a large number of unfamiliar terms. Notice
that graph terminology is extremely unstable, so the main goal is not learning
terminology but rather learning to properly interpret formal definitions. On-
line drill problems work well for the easier definitions towards the start of the
chapter. However, it may be useful to spend some lecture time (e.g. a third
of a lecture) working through examples involving paths and connectivity.

Chapter 10: 2-way Bounding (0.67 lectures)

Two-way bounding is an important technique that seems to be obvious to
mathematicians but difficult for beginners to appreciate. In computer sci-
ence, the most important application of upper and lower bounding is in algo-
rithm analysis. However, algorithm examples are complex and lower bounds
typically difficult to prove. So we draw most of our examples, particularly
on homework and exams, from graph coloring, where both upper and lower
bounds require only simple arguments. Therefore, this short topic combines
well with the end of graphs.

There are two main ideas for lecture:



CHAPTER 2. TOPICS BY LECTURE 13

e proving an equality via upper and lower bounds

e sometimes upper and lower bounds don’t meet

You need to convince students that both halves are important and that
the two halves are different. Otherwise many will do only one half of these
proofs. So select examples where the two halves of the proof require different
techniques. Avoid examples (e.g. abstract set identities) where one half is
basically a reversed version of the other and an adult would be tempted to
replace the second half with “similar.”

Even more experienced folks often to stop and think carefully to be sure
of whether they have an upper or lower bound. Student have little experience
using these terms in previous math and science classes. And, finally, they are
uncertain about using these terms to describe bounds that aren’t tight. So
they also need practice (mostly outside lecture) with using the terms “upper
bound” and “lower bound” on simple examples with familiar objects. For
example, is 20 an upper bound on the age of a US president? a lower bound?
neither?

The main goal for problems on graph coloring is to that they prove both
the upper bound and the lower bound. In easy examples, the upper bound
simply involves showing a coloring and the lower bound comes from a special
subgraph (e.g. a wheel). Harder problems might require a case-by-case
analysis to establish the lower bound. Or establishing how the chromatic
number of a modified graph relates to that of the input graphs used to create
it, e.g. what happens if we join two graphs with a cut edge.

To attack some of these harder examples, many students will need to
be explicitly reminded that the choice of particular color names is arbitrary.
So, for example, you can freely rotate the color space of one graph prior to
joining it to a second graph.

The second third (about 7 lectures)

The second third of the course, Chapters 11-15, is about induction and recur-
sion. Because induction and recursion are extremely important in computer



CHAPTER 2. TOPICS BY LECTURE 14

science but difficult for many students, we spread practice over several chap-
ters:

e Basic inductive proof: Chapter 11

e With recursive definitions: Chapter 12

e Induction trees: Chapter 13

Induction with inequalities: Chapter 14

As applied to analysis of algorithms: Chapter 15

Chapter 11: Induction (2 lectures)

The main goal of this chapter is obvious: to write a straightforward proof by
induction. We do this in two lectures.

The first lecture covers the basic idea and outline for an inductive proof.
Although these simple examples require only weak induction, we consistently
use strong inductive hypotheses, so that the form of the hypothesis remains
stable. Emphasize the outline and name key components: P(x), inductive
hypothesis, conclusion of the inductive step, closed form (where applicable).

The second lecture covers examples that require strong induction, i.e.
reaching back more than one step. It also introduces an example of a “greedy”
algorithm, for graph coloring. We also recap the idea from Chapter 10 that
an upper bound might not be tight. Emphasize this: many students misre-
member this bound as an exact result.

Well-prepared students have done some recursive programming before
this class. Also, we introduce induction after well-prepared students have
mastered direct proof. So students typically get on top of the main ideas
and outline with modest amounts of help. So much of our time is spent
debugging the technical details.

Many problems center around writing a correct inductive hypothesis which
connects properly to the rest of the inductive step.



CHAPTER 2. TOPICS BY LECTURE 15

e They may use the wrong choice of quantifier.

e They may use a single variable in a hypothesis that requires two, e.g.
k=0,...,k

e The variable used in the conclusion of the inductive step may match
the wrong one of the variables used in the hypothesis.

e The conclusion of the inductive step may be for a slightly higher or
lower value of the moving variable than the correct target.

e They may use < where < is required, or vice versa.

e They may start the hypothesis at the first value after the base case,
rather than at the first base case.

e They may use a weak hypothesis in proofs which require a strong one.
Or they may use a modified weak hypothesis involving the last two
values of n.

When writing the base case

e They may write a chain of equalities that presupposes the claim they
are trying to prove, e.g. that the lefthand side is equal to the righthand
side which is equal to some formula.

Chapter 12: Recursive Definition (about 1 lec-
ture)

This chapter continues practicing induction, gradually widening the space of
examples. There are three main topics for lecture:

e How to read a recursive definition (should be easy)

e Using unrolling to find a closed form

e Writing an inductive proof for a result that is based on a recursive
definition



CHAPTER 2. TOPICS BY LECTURE 16

Divide and conquer relations are central to computer science. However,
at this level, floors and ceilings distract from the main point of the exercise.
So we make simplifying assumptions to avoid them, e.g. find the closed form
only for powers of 2 and assert without proof that the solution is monotonic
between these selected inputs. Those continuing in the field will eventually
take an algorithms course that will clean up these details.

Notice that unrolling, as a method, is prone to small algebra errors. This
is true even when done by folks with solid algebra skills, e.g. course staff.
Advise them to be careful, tell them you will be nice about small bugs in
grading, and advise checking alleged closed forms for some small input values.
Be mellow and let them have fun helping find out what stupid mistake you
made while doing unrolling in lecture.

Chapter 13: Trees (about 2 lectures)

Basic definitions of trees and tree terminology are easy and can largely be
taught with online drill. It’s more helpful if lectures present some of your
favorite motivating examples that illustrate why trees are useful in a wide
range of applications, as well as covering the three harder topics:

e context-free grammars (lecture 1)
e tree induction proofs (both lectures)

e closed forms via recursion trees (lecture 2)

For this topic, the textbook adopts a distinctly applications-oriented per-
spective. A “tree” is, by default, a rooted tree with left-to-right order, match-
ing applications usage. (See Chapter 21 for examples of “free”, i.e. rootless
trees.) Tree nodes typically contain labels, to create a wider range of in-
teresting examples (e.g. for homeworks). And context-free grammars are
presented as a way to define trees (as in Al or programming languages) not
as a way to define sets of strings (as in theoretical treatments).

Context-free grammars are introduced partly because they are important
in CS applications and partly to create a wider range of examples for tree



CHAPTER 2. TOPICS BY LECTURE 17

induction. Keep your presentation simple and concrete. Students will get
lost if you use the more complex, more abstract treatments that are typical
in later theory courses. Our goal is not to replace the automata theory course
but to inspire students to take it.

Notice that our definition of context-free grammar is slightly non-standard.
It’s easy to show that the languages generated are the same as always. How-
ever, a wider range of tree shapes is allowed, to better cover the full range of
practical examples.

The key to success in doing tree induction is to divide a tree at its root.
If students adopt this approach, tree induction is straightforward. However,
this requires convincing students not to use the method that many seem
to naturally prefer: grafting extra nodes onto the leaf level. It works best
to directly stipulate the divide-at-root method, because very few students
can accurately assess whether supposed proofs using the grafting method are
correct. (Sometimes they do work.)

Recursion trees are not very difficult conceptually. However, they require
a lot of lecture time because the details are complex and easy to mess up. Try
to keep enough focus on the main structure of how features of the tree (e.g.
branching factor) relate to features of the recursively defined function (e.g.
number of recursive calls). We cover only very simple examples of recursion
trees, typically assuming input values that will make them full and complete.

Chapter 14: Big-O (about 1 lecture)

The main learning goals of this chapter are
e Good understanding of the dominant term method for working out
big-O relationships, and
e Practice writing inductive proofs with inequalities.
The slightly edgy theoretical development is used so that we have a way

to state (rather than merely imply informally) when a term is asymptotically
smaller and therefore can be ignored. This allows us to derive a version of



CHAPTER 2. TOPICS BY LECTURE 18

the dominant term method that works properly even in the case of negative
terms. Do the theoretical development with a light hand and don’t expect
students to be able to reproduce the supporting details. Keep the main focus
on our end goal: the dominant term method.

In particular, do not attempt to provide a formal definition of a limit. In
recent years, many calculus classes have de-emphasized formal definitions,
apparently because so many students have memorized them without much
understanding. An informal understanding of limits, which calculus classes
do reliably provide, should be entirely sufficient for our purposes.

To help them understand the definition of big-O, we ask students to find
suitable values for ¢ and k. However, we don’t ask them to write formal
proofs of big-O relationships using this definition. In the vast majority of
cases, it’s simpler to rely on the dominant term method.

This chapter includes the final step in our multi-week approach to practic-
ing inductive proof construction. Our students know the rules for manipulat-
ing inequalities. However, since previous math courses have done very little
with them, most students lack fluency. This makes all proofs with inequali-
ties, but especially inductive ones, more difficult than the corresponding ones
with equalities.

Chapter 15: Algorithms (about 1 lecture)

This chapter presents three patterns of algorithm analysis:

e nested loops
e while loops (resource consumption)

e recursive

Students find nested loops straightforward. Resource consumption is a
bit of a black art. So our main focus is on analysis of recursive algorithms.
Specifically, our main job is to write the recursive running time definition
corresponding to a code fragment. Techniques from previous chapters can
then be used to find a big-O version of its closed form.



CHAPTER 2. TOPICS BY LECTURE 19

We emphasize very standard design patterns, whose analyses are worth
memorizing. Karatsuba’s algorithm is presented at the end to show that the
range of possibilities is much larger. However, we frequently skim past many
of its details and certainly don’t expect students to reproduce them.

Many students have already seen standard array-based sorting and search-
ing algorithms in their first programming course, and they will see them
again in a later algorithms course. To prevent boredom, it’s good to look for
other types of examples, e.g. involving graphs or 2D geometry. Since we are
teaching algorithm analysis, not algorithm design, it’s ok to use sub-optimal
algorithms as examples.

However, notice that students have seen very few data structures and
some of these (e.g. linked lists) perhaps very briefly. So it’s critical to keep
pseudo-code simple and be very clear about implementation assumptions.

The final third (8 lectures)

The earlier parts of the course taught them techniques that they should be
able to apply with some confidence as they move on to the next course. The
final third of the course, Chapters 16-21, covers topics that are more abstract.
We are primarily giving them a sense of the fun topics that they will learn in
future theory courses and preparing them to understand these topics more
easily when they do see them again. Therefore, in many cases, we expect
students to come away with only a shallow understanding of subjects that
are quite deep.

Some of these topics would traditionally be presented earlier in the course,
e.g. the material in Collections of Sets. However, we’'ve found that many
students are not prepared to absorb these harder concepts until late in the
term.

Chapter 16: NP (about 1 lecture)

This presentation of NP is intended to be very brief and introduce students
to a central piece of CS theory culture. Essentially all the technical details



CHAPTER 2. TOPICS BY LECTURE 20

are beyond the scope of this course, so the goal is to make the main ideas
accessible. To do this, we define as few abstract technical terms as possible.
We also choose versions of problems (e.g. marker making) that relate well to
applications rather than the simplified versions (e.g. bin packing) common
in theory discussions. Students won’t be writing proofs in this class and it’s
more important that they should understand why the ideas are important.

This is also a good place to discuss how logic relates to circuits. Logic cir-
cuits fit naturally into a discussion of NP. And the students now have enough
mathematical maturity to absorbe abstract discussions of the relationship.

Chapter 17: Contradiction (about 1 lecture)

The basic outline of proof by contradiction is easy to understand. However,
earlier in the course, students lack the maturity to use this method well.
Rather than pushing to debug their direct or contrapostive proof, they write
a contradiction proof with a complex, meandering outline that is frequently
buggy. Or, even sadder, many try to use a broken multi-paragraph contra-
diction proof in place of a 1-line concrete counter-example.

We delay teaching contradiction so that they will be forced to get on top
of the simpler methods that normally lead to easier, clearer proofs. Contra-
diction is then presented as a method to use selectively in two situations:

e When direct methods fail, as in the diagonalization proof we’ll see in
Chapter 20, or

e When the contradiction proof is much simpler, e.g. the classic proof of
the irrationality of V2.

Chapter 18: Collections of Sets (about 1.25
lectures)

Many of our students find examples with nested sets very tricky. So we delay
this topic until they have had considerable practice with more basic versions



CHAPTER 2. TOPICS BY LECTURE 21

of sets, functions, and so forth. And we focus almost entirely on getting them
to understand sets with one layer of nesting: a set containing sets, each of
which contains atomic objects. Except for a few throw-away examples, we
don’t use deeper nesting and we don’t build sets containing a mixture of sets
and atomic objects. Finally, we make set-containing sets more distinct by
calling them “Collections” and using script variable names.

The first lecture reviews basic notation and then covers two difficult con-
cepts:

e Set-valued functions

e Partitions

The difficulty here lies in the abstract nature of the concepts and notation.
So take it slowly in lecture, emphasizing how each piece of notation translates
into its informal meaning. Also emphasize the type of each example object,
e.g. is X a student? a set of students? or a set of sets of students?

The second (about 25%) lecture covers the counting formulas from this
chapter. Much of this material is semi-familiar to the students and can be
taught using on-line exercises. The exception is the formula for combina-
tions with repetition. Make sure they clearly understand the objects and
separators picture used to derive this formula.

Chapter 19: State Diagrams (about 1.75 lec-
tures)

State diagrams are a modest generalization of finite automata, intended to
cover the full range of similar-looking examples found in computer science
applications. They are also a nice example of directed graphs, which we
saw briefly in the context of relations. As with Chapter 13 (Trees), this
chapter takes an aggressively applications-oriented perspective. We're not
trying to cover the kinds of formal details about finite automata typical of
later courses. Rather, we're trying to show the big ideas with a range of
practical applications, largely drawn from Artificial Intelligence.



CHAPTER 2. TOPICS BY LECTURE 22

Lectures can be divided as

e Lecture 1 (75%): basic notation and examples

e Lecture 2: representing transition functions and managing huge state
machines

Students can very quickly pick up the basic notation and design ideas for
these state machines. E.g. design a phone lattice that recognizes a simple
class of strings, with simple uses of loops.

Transition functions are defined to return sets of states. This is partly for
flexibility, e.g. when constructing phone lattices. But it also gives an excuse
to keep practicing the baffling notation for set-valued functions. Students at
this level lack the programming maturity to see why this non-determinism
might cause headaches. So if you act like it’s not a big deal, they won’t
WOrTYy.

The input/output pair representation of functions is traditionally pre-
sented as the formal definition of functions. This is unsatisfying to the
students because it’s dry and technical. It’s unsatisfying intellectually be-
cause it’s not really a definition: functions and sets of pairs aren’t the same
thing except when doing foundations. This book re-casts the discussion as
a problem in storing functions inside a computer program, which avoids the
philosophical issues and is of more practical relevance to the students.

Finally, we give a brief introduction to some issues presented by huge
state machines: shared states (aka dynamic programming), on-demand state
creation, and infinite state spaces. We don’t expect students to do much, if
anything, with these ideas. They are just to expand their cultural knowledge.
And the Game of Life examples are reliably fun to present in class.

Chapter 20: Countability (about 2 lectures)

This topic is well known to be difficult. At this stage in their education, it’s
presented largely for general knowledge and to “prime the pump” for seeing
this again in a future theory class. Notice also that we’re getting close to the



CHAPTER 2. TOPICS BY LECTURE 23

end of the term. Students are getting burnt out. And you may be past the
cutoff for the last topics that can be practiced on a homework.

So, don’t expect much in terms of students applying these techniques
themselves right now. Relax and try to keep it fun.

Cantor Schroeder Berstein’s theorem is used more extensively than is
traditional. This is partly because it allows very simple, non-messy proofs of
countability. But, also, it gives us another opportunity to demonstrate the
useful 2-way bounding technique from Chapter 10.

This topic can be covered in one lecture. However, it’s more comfortable
to use two lectures, so that tired students have a chance to think about the
ideas and ask questions.

In a 2-lecture presentation, the first lecture might cover

e measuring size of infinite sets via bijections and one-to-one functions

e proving equality two ways: direct construction of a bijection and via
2-way bounding

e simple examples of countable sets

The second lecture then covers uncountability:

e diagonalization proof
e examples of uncountable sets

e intuition: uncountable sets contain individual objects (sequences, sub-
sets, tilings, program traces) that are aperiodic, i.e. have infinite length
but no repeating pattern

e there are more functions than (a) succinct formulas or (b) programs
(uncomputability)

e aperiodic tilings

Many students will find the diagonalization proof mysterious and unset-
tling. Reassure them that this is normal. It’s a grossly non-constructive



CHAPTER 2. TOPICS BY LECTURE 24

proof of a counter-intuitive result. Remember that their models of the reals
and the rationals are not crisp enough to provide much distinction between
the two. Don’t expect them to answer deep questions on this topic: save
that for the next theory course.

Aperiodic tilings are a fun example to end on. They have very pretty
pictures and a wonderful historical story. Who would think that abstract
results about uncomputability would be so closely tied to Nobel-prize winning
practical results in Chemistry? Also, they provide a concrete picture for the
kind of behavior that makes the Halting Problem undecidable.

Chapter 21: Planar Graphs (optional extra)

This is a fun topic if you have extra time at the end of the term, or if you need
supplementary material for honors students. It makes a good capstone topic,
because it uses a range of techniques from earlier in the course, especially
the inductive proof of Euler’s formula. In its complete form, it requires two
lectures, but you can hit the high points in a single lecture.

Conclusion (1 lecture)

The last lecture is typically consumed by wrap-up activities, e.g. filling out
course evaluations, summarizing the course, previews of following courses,
review for the final exam.



Chapter 3

Helping Weaker Students

The previous chapter discussed how to present the material for typical stu-
dents who enter the course with the intended background. Inevitably, some
students attempt to take this course with inadequate preparation. As a short-
hand, I will refer to these as “weaker students” with the understanding that
I'm describing only their current state rather than their long-term potential.
This section contains suggestions about how to identify these students and,
when possible, address their weaknesses so that they can succeed.

We will focus on describing the skills involved. Your situation and phi-
losophy will determine how you choose among strategies such as:

e Persuading students to drop, e.g. and take another course first.

e Channelling students into a prep course.

e Providing extra drill problems.

e Providing extra discussions or tutoring.

If a student truly lacks the background to survive the course at this
point, it is kindest to help them find a more appropriate course as early as
possible rather than having them fail the course or drop halfway through

the term. Similarly, lowering standards at this point sets the student up
for a more damaging failure in later parts of their major. So problems with

25



CHAPTER 3. HELPING WEAKER STUDENTS 26

preparation need to be made manifest and fixed. Because the main effect
is overall mathematical maturity, poorly prepared students may be helped
by technical courses outside the math sequence, such as programming and
physics.

The problems detailed below are common in weaker students. However,
they are also places where stronger students are a bit shaky, have to work
carefully, and make occasional errors. So a modest amount of drill and review
on these topics is appropriate for the whole class.

Chapter 1: Math Review

Students with poor preparation typically lack fluency with algebra and pre-
calculus. So they exhibit the following sorts of problems. Often, they do
know the right answer if given sufficient thinking time, but become inaccurate
under time pressure or when these are merely a small step in solving a larger
problem (e.g. writing a proof).

e Have difficulty doing simple problems with logs and exponents, even
when reminded of easily-forgotten formulas (e.g. change of base).
e Have trouble doing algebra with symbolic fractions.

e Can’t quickly factor 2nd order polynomials where trial and error works,
e.g. all coefficients are integers. Or it doesn’t occur to them to factor
a polynomial when this might be useful, e.g. in constructing proofs.

e Treat integers, rational, reals as mutually exclusive categories, e.g. 3
isn’t a real number.

e Test membership in standard sets (integers, reals, etc) using superficial
features rather than simplifying and checking the right property, e.g.

V2 -4/2 is irrational.

e Believe infinity is an actual number.

e Make an undue number of mechanical mistakes in algebra derivations,
e.g. k+k+k+k=Fk*or, more subtly, 5(3*~t — 2k=1) = 15k=1 — 10~



CHAPTER 3. HELPING WEAKER STUDENTS 27

Many students have problems with inequalities, both the underlying con-
cept of a bound that isn’t tight and the mechanics of manipulating algebra
with inequalities. So they are all prone to the following sorts of problems,
but they are more common with the weaker students.

e Confusion of < and |, positive and non-negative.
e Negation of < to >.

e Trouble doing algebra derivations involving inequalities.

Insufficient mathematical maturity also makes it difficult to quickly pick
up easy concepts such as

e How to use summation notation, e.g. change the indexing, extract the
first or last term, move a constant multiplier outside the summation.

e String notation

To succeed, students also need to have taken an introductory program-
ming class. Ideally, this should have included manipulation of values in
arrays, building simple recursive functions, and some exposure to linked lists
or other pointer-based structures. Students without this background need
to be warned explicitly at the start of term, because these skills won’t be
needed until later. Simple pseudo-code reading exercises can be useful for
detecting and scaring folks who lack both this background and the ability to
quickly pick up enough to get by.

Chapters 2-3: Proofs and Logic

Weaker students have trouble getting on top of the simple mechanical aspects
of propositional and predicate logic. Where stronger students only need to
work on the less obvious issues, such as how OR differs from XOR or how
to negate AND, the weaker ones sometimes have trouble understanding how
AND and IMPLIES differ in meaning, or even how AND differs from OR.



CHAPTER 3. HELPING WEAKER STUDENTS 28

Weaker students also tend to believe that a statement is not true if it
expresses less information than we know. For example, they think [z —1| < 8
does not imply = < 100 because we should have concluded that x < 9.

Weaker students may have trouble applying the definition of rational
number. They may fail to simplify e.g. % is irrational. They may not

ensure that the numerator and denominator are integers, e.g. % is rational.
They may assume that a fraction must be in lowest terms or not heavy, e.g.
3 isn’t rational.

Chapter 4: Number Theory

Now that we’re starting to write proofs of some complexity, using concepts
that aren’t entirely familiar, weaker students tend to get stuck trying to solve
homework problems. They need additional help learning to use methods
which have been presented in lecture:

e Building a proof by working inwards from both ends.

e Applying the definition of a key concept (e.g. divides) to narrow that
gap.

e Testing a conjecture or exploring a definition by trying small examples

In the discussion of modular arithmetic and equivalence classes, they may
need

e Additional practice doing modular arithmetic.

e Help understanding distinction between a fraction and the natural num-
ber it names.

Chapters 5-6: Sets and Relations

Aside from the hard new concepts discussed above, weaker students need
drill problems to help them get on top of routine concepts and new notation.



CHAPTER 3. HELPING WEAKER STUDENTS 29

For example, they may confuse the notation for a set and an ordered tuple,
they often have extra or missing levels of set brackets, and so forth.

Their grasp of quantifiers and if/then statements tends to be shaky. They
think they need more examples of what does/doesn’t satisfy the relation
properties, and those are indeed useful. But addressing their underlying
issues should also involve exercises that work directly on their understand-
ing of quantifiers and if/then, using more basic examples that don’t involve
relations.

Finally, they still need help with basic proof-building skills. They are
even more reluctant than other students to prove antisymmetry by assuming
xRy and yRx and showing that » = y.

Chapters 7-8: Functions

Weaker students often confuse a single value (e.g. the integer x), a set of
values (e.g. Z), and a type (e.g. integers). So they write confused statements
like “17 is a Z” or “17 is a domain.” They also tend to confuse the domain
and co-domain, especially when asked to write formal definitions using quan-
tifiers. It is not always clear whether they have a broken picture in their head
or a broken model of what the words mean and how to use them fluently.
Mechanical drill probably helps here.

Where other students are struggling primarily with nested quantifiers,
weaker students still have a hazy understanding of single quantifiers and the
meaning of if/then. So they may confuse “some” with “all” in writing. Or
they may avoid using quantifiers to express ideas such as one-to-one, prefering
to use words like “unique” in ways which are often ambiguous. And they
have trouble knowing precisely what would constitute a counter-example to
a claim about one-to-one or onto.

Some of the confusion between domain and co-domain seems to be at the
level of underlying concepts. When asked to draw the bubble diagram of
a function that is not one-to-one, many weaker students draw an example
where one input value corresponds to two output values. Diagram-based
exercises are useful in testing and drill for students with weak ability to
translate ideas into formal mathematical statements.



CHAPTER 3. HELPING WEAKER STUDENTS 30

Chapters 9: Graphs

The weaker students have more difficulty getting on top of the details of
the concepts. They have a spongier understanding of the mathematical jar-
gon used to write the definitions. And they may be less good at paying
close attention to detail as they read. So they need more drill on the basic
definitions.

These students find isomorphism extremely difficult. Even once they
understand the concept of isomorphism, they may show signs of poor general
problem-solving skills. That is, trouble

e analyzing the constraints methodically,

e identifying features which tightly constrain the form of the solution,
e.g. a vertex that is the only one with a specific degree,

e checking that a plausible vertex match (e.g. same degree) actually
works when you try to line up the edges,

e giving up on a line of analysis that isn’t working and trying something
else,

e applying counting rules, e.g. 4 vertices that can be freely permuted
generates 4 (in place of 4!) possibilities, and

e explaining their analysis clearly.

They have a tendency to apply simplified methods that don’t work right.

Chapter 10: 2-way Bounding

Few students are fluent with bounds or even with numerical inequalities.
Weaker students may have major problems with manipulating inequalities al-
gebraically and learning to use the terms “upper bound” and “lower bound.”
They are likely to misremember whether a method (e.g. a wheel subgraph)
yields an upper bound, a lower bound, or an exact result. They also forget



CHAPTER 3. HELPING WEAKER STUDENTS 31

extremely quickly that they have to establish both bounds e.g. for graph
coloring problems.

Frequently, weaker students did not get fully on top of set builder notation
when we saw it earlier and/or absorbed it only superficially so they it has
now been forgotten. So they may need review and further practice at this
point.

Chapter 11: Induction (2 lectures)

Weaker students may not get the basic ideas behind induction and write
proofs whose central supporting structure is wrong. For example

e They may state the values of n required for the base case, and perhaps
compute one side of the equation involved in the claim, but not actually
check the truth of the claim.

e Their inductive hypothesis may state that the claim is true for all values
of n.

e Their inductive step may fail to use the inductive hypothesis at all, or
perhaps use it only once in proofs where it must be applied twice.

e Their inductive step may prove the claim for a value one smaller, rather
than one larger, than the largest value covered by the hypothesis.

These students may also have a weak grasp of logical order and writing a
simple direct proof. So their inductive step may be more-or-less backwards.

Chapter 12: Recursive Definition

Weaker students may have difficulty with this topic because they have diffi-
culty

e interpreting recursive definitions,



CHAPTER 3. HELPING WEAKER STUDENTS 32

e manipulating summation notation, and/or
e switching between sequence notation and the nearly equivalent function

notation.

They may also not yet understand the basic ideas and mechanics of induction.

They may also

e Have trouble figuring out how many base cases are required.
e Misinterpret the recursive definition as having proved the result for the

base cases, and thus start their base cases at the next higher value.

Finally, limited fluency with logs, exponents, and summations may create
challenges when they try to simplify unrolling results.

Chapter 13: Trees

Weaker students often have lingering problems reading simple formal defini-
tions. So they may need more help (e.g. online drill) with the large number
of tree definitions and basic facts. Check for

e special cases, e.g. trees of height zero
e correct use of similar terms, e.g. level vs height
e understanding how context-free rules map onto local tree constraints

(e.g. left-to-right order matters)

Weaker students are likely to have problems relating features of a recursive
definition to features of the corresponding recursion tree. This may be due,
in part, to a weak grasp of recursive definition. But they can be helped a lot
by a systematic, step-by-step approach to recursion tree construction.



CHAPTER 3. HELPING WEAKER STUDENTS 33

Chapter 14: Big-O

Even for the weaker students, the main ideas of big-O aren’t that hard.
However, they may have substantial problems doing induction proofs with
inequalities. It might help to offer optional review problems prior to this
chapter.

Chapter 15: Algorithms

Weaker students may have trouble forming a clear picture of how the code
fragments work. E.g. they may interpret recursive procedures incorrectly.
Or they may have trouble figuring out how many times a recursive procedure
is called. This is most common with students who took this course without
the listed programming prerequisite or who did poorly in that course.

Weaker students also have problems mapping key features of the code to
key features of the recursive running time definition. This is probably the
same students who had trouble mapping recursive definitions to recursion
trees. Again, systematic step-by-step tutoring (in person or online) can help.

Chapter 16: NP

We don’t expect students to get a deep understanding of this topic, so weaker
preparation causes few problems here.

Chapter 17: Contradiction

The first step in building a contradiction proof is to form the negation of the
claim. Weaker students may still have trouble doing this correctly.

The end goal of contradiction proof is poorly defined. Weaker students
may need help exploring several hypotheses for what might make a good final
contradiction.



CHAPTER 3. HELPING WEAKER STUDENTS 34

Finally, weaker students may still be relying on intuitive heuristics for
logical order, rather than a crisp model of what steps are ok. Intuition works
less well in proofs by contradiction, because most of the proof describes a
counter-factual situation. They may need more help getting their working
notes into proper logical order for their final draft.

Chapter 18: Collections of Sets

Weaker students may not be fully on top of basic set and function concepts,
making them less able to follow the details of this extension. They may
also have lost track of definitions presented earlier in the term, e.g. the
equivalence class notation we used for modular arithemetic. Review exercises
might be helpful here.

Weaker students also have difficulty mapping notation onto concepts. For
example, if the co-domain of a numerical function f is P(Z), then what sort
of object is f(3)? These students also need extra help with correct use of
terminology. E.g. some may refer to any collection of sets as “a power set.”

Finally, weaker students may be less good at close reading of notation.
Reading problems may be helping make this class hard for them. But, also,
poor understanding of the math may be making it harder to read. In ei-
ther case, they might benefit from exercises that make them look closely at
features of expressions such as the numbers of curly brackets.

Chapter 19: State Diagrams

The weaker students may not yet have a solid grasp of the ideas from the
previous chapter, notably

e Manipulating collections of sets,

e Reading type signatures, especially those involving power sets.

They often get confused between the whole domain/co-domain and a single
input/output value.



CHAPTER 3. HELPING WEAKER STUDENTS 35

Weaker students may need help to understand the basic notation and
design of simple automata. They may be less good at debugging their designs,
either due to weaker programming skills or weaker proofreading skills or
general overload at the end of the term.

Chapter 20: Countability

The weaker students will have a lot of trouble with this material, but it’s not
a big tragedy if they get only a very superficial picture. Like the rest of the
class, it will be in the next theory class where it’s critical that they follow all
the details.

Weaker students may get more out of the proofs if they are helped with
one specific technical issue: how to represent a set as a bit vector.

Chapter 21: Planar Graphs

This topic is optional and fairly lightweight. It’s not a big deal whether the
weaker students get fully on top of the details.



