
Chapter 14

Big-O

This chapter covers asymptotic analysis of function growth and big-O nota-
tion.

14.1 Running times of programs

An important aspect of designing a computer programs is figuring out how
well it runs, in a range of likely situations. Designers need to estimate how
fast it will run, how much memory it will require, how reliable it will be, and
so forth. In this class, we’ll concentrate on speed issues.

Designers for certain small platforms sometimes develop very detailed
models of running time, because this is critical for making complex appli-
cations work with limited resources. E.g. making God of War run on your
Iphone. However, such programming design is increasingly rare, because
computers are getting fast enough to run most programs without hand opti-
mization.

More typically, the designer has to analyze the behavior of a large C or
Java program. It’s not feasible to figure out exactly how long such a pro-
gram will take. The transformation from standard programming languages
to machine code is way too complicated. Only rare programmers have a
clear grasp of what happens within the C or Java compiler. Moreover, a very
detailed analysis for one computer system won’t translate to another pro-

166

CHAPTER 14. BIG-O 167

gramming language, another hardware platform, or a computer purchased
a couple years in the future. It’s more useful to develop an analysis that
abstracts away from unimportant details, so that it will be portable and
durable.

This abstraction process has two key components:

• Ignore behavior on small inputs, concentrating on how well programs
handle large inputs. (This is often called asymptotic analysis.)

• Ignore multiplicative constants

Multiplicative constants are ignored because they are extremely sensitive
to details of the implementation, hardware platform, etc. Behavior on small
inputs is ignored, because programs typically run fast enough on small test
cases. Difficult practical problems typically arise when a program’s use ex-
pands to larger examples. For example, a small database program developed
for a community college might have trouble coping if deployed to handle (say)
all registration records for U. Illinois.

14.2 Asymptotic relationships

So, suppose that you model the running time of a program as a function f(n),
where n is some measure of the size of the input problem. E.g. n might be
the number of entries in a database application. Your competitor is offering
a program that takes g(n) on an input of size n. Is f(n) faster than g(n),
slower than g(n), or comparable to g(n)? To answer this question, we need
formal tools to compare the growth rates of two functions.

Suppose that f(n) = n and g(n) = n2. For small positive inputs, n2 is
smaller. For the input 1, they have the same value, and then g gets bigger
and rapidly diverges to become much larger than f . We’d like to say that g
is “bigger,” because it has bigger outputs for large inputs.

When a function is the sum of faster and slower-growing terms, we’ll only
be interested in the faster-growing term. For example, n2 + 7n+ 105 will be
treated as equivalent to n2. As the input n gets large, the behavior of the

CHAPTER 14. BIG-O 168

function is dominated by the term with the fastest growth (the first term in
this case).

Formally, we’ll compare two functions f(n) and g(n) whose inputs and

outputs are real numbers by looking at their ratio f(n)
g(n)

. Because we are only
interested in the running times of algorithms, most of our functions produce
positive outputs. The exceptions, e.g. the log function, produce positive
outputs once the inputs are large enough. So this ratio exists as long as we
agree to ignore a few smaller input values.

We then look at what happens to this ratio as the input goes to infinity.
Specifically, we’ll define

(asymptotically equivalent) f(n) ∼ g(n) if and only if limn→∞

f(n)
g(n)

= 1

(asymptotically smaller) f(n) ≪ g(n) if and only if limn→∞

f(n)
g(n)

= 0

Recall from calculus that limn→∞ h(n) is the value that output values
h(n) approach more and more closely as the input n gets larger and larger.1

So two asymptotically equivalent functions become more and more similar as
the input values get larger. If one function is asymptotically smaller, there is
a gap between the output values that widens as the input values get larger.

So, for example limn→∞

n2+n
n2 = 1 so n2 + n ∼ n2. limn→∞

n2+17n
n3 = 0 so

n2 + 17n ≪ n3. And limn→∞

3n2+17n
n2 = 3 so 3n2 + 17n and n2 aren’t related

in either direction by ∼ or ≪.

If we pick two random functions f and g, limn→∞

f(n)
g(n)

does not always

exist because f(n)
g(n)

might oscillate rather than converging towards some par-
ticular number. In practice, we’ll apply the above definitions only to selected
well-behaved primitive functions and use a second, looser definition to handle
both multiplicative constants and functions that might be badly behaved.

1Don’t panic if you can’t recall, or never saw, the formal definition of a limit. An

informal understanding should be sufficient.

CHAPTER 14. BIG-O 169

14.3 Ordering primitive functions

Let’s look at some primitive functions and try to put them into growth order.
It should be obvious that higher-order polynomials grow faster than lower-
order ones. For example n2 ≪ n5 because

limn→∞

n2

n5 = limn→∞

1
n3 = 0

You’re probably familiar with how fast exponentials grow. There’s a
famous story about a judge imposing a doubling-fine on a borough of New
York, for ignoring the judge’s orders. Since the borough officials didn’t have
much engineering training, it took them a few days to realize that this was
serious bad news and that they needed to negotiate a settlement. So n2 ≪ 2n.
And, in general, for any exponent k, you can show that nk ≪ 2n.

The base of the exponent matters. Consider 2n and 3n. limn→∞

2n

3n
=

limn→∞(2
3
)n = 0 So 2n ≪ 3n.

Less obviously, 2n ≪ n!. This is true because 2n and n! are each the
product of n terms. For 2n, they are all 2. For n! they are the first n

integers, and all but the first two of these are bigger than 2. So as n grows
larger, the difference between 2n and n! widens. We’ll do a formal proof of
this result in Section 14.7 below.

We can summarize these facts as:

n ≪ n2 ≪ n3 . . . ≪ 2n ≪ 3n ≪ n!

For the purpose of designing computer programs, only the first three of
these running times are actually good news. Third-order polynomials already
grow too fast for most applications, if you expect inputs of non-trivial size.
Exponential algorithms are only worth running on extremely tiny inputs, and
are frequently replaced by faster algorithms (e.g. using statistical sampling)
that return approximate results.

Now, let’s look at slow-growing functions, i.e. functions that might be
the running times of efficient programs. We’ll see that algorithms for finding
entries in large datasets often have running times proportional to logn. If
you draw the log function and ignore its strange values for inputs smaller
than 1, you’ll see that it grows, but much more slowly than n. And the

CHAPTER 14. BIG-O 170

constant function 1 grows even more slowly: it doesn’t grow at all!

Algorithms for sorting a list of numbers have running times that grow
like n log n. We know from the above that 1 ≪ log n ≪ n. We can multiply
this equation by n because factors common to f and g cancel out in our
definition of ≪. So we have n ≪ n logn ≪ n2.

We can summarize these primitive function relationships as:

1 ≪ log n ≪ n ≪ n logn ≪ n2

It’s well worth memorizing the relative orderings of these basic functions,
since you’ll see them again and again in this and future CS classes.

14.4 The dominant term method

The beauty of these asymptotic relationships is that it is rarely necessary
to go back to the original limit definition. Having established the relation-
ships among a useful set of primitive functions, we can usually manipulate
expressions at a high level. And we can typically look only at the terms that
dominant each expression, ignoring other terms that grow more slowly.

The first point to notice is that ∼ and ≪ relations for a sum are de-
termined entirely by the dominant term, i.e. the one that grows fastest.
If f(n) ≪ g(n), then g(n) ∼ g(n) ± f(n). For example, suppose we are
confronted with the question of whether

47n+ 2n! + 17 ≪ 3n + 102n3

The dominant term on the lefthand side is 2n!. On the righthand side, it
is 3n. So our question reduces to whether

2n! ≪ 3n

We know from the previous section that this is false, because

3n ≪ n!

CHAPTER 14. BIG-O 171

.

The asymptotic relationships also interact well with normal rules of al-
gebra. For example, if f(n) ≪ g(n) and h(n) is any non-zero function, then
f(n)h(n) ≪ g(n)h(n).

14.5 Big-O

Asymptotic equivalence is a great way to compare well-behaved reference
functions, but it is less good for comparing program running times to these
reference functions. There are two issues. We’d like to ignore constant mul-
tipliers, even on the dominant term, because they are typically unknown and
prone to change. Moreover, running times of programs may be somewhat
messy functions, which may involve operations like floor or ceiling. Some
programs2 may run dramatically faster on “good” input sizes than on “bad”
sizes, creating oscillation that may cause our limit definition not to work.

Therefore, we typically use a more relaxed relationship, called big-O to
compare messier functions to one another or two reference functions. Suppose
that f and g are functions whose domain and co-domain are subsets of the
real numbers. Then f(n) is O(g(n)) (read “big-O of g) if and only if

There are positive real numbers c and k such that 0 ≤ f(n) ≤
cg(n) for every n ≥ k.

The factor c in the equation models the fact that we don’t care about
multiplicative constants, even on the dominant term. The function f(n) is
allowed to wiggle around as much as it likes, compared to cg(n), as long as it
remains smaller. And we’re entirely ignoring what f does on inputs smaller
than k.

If f(n) is asymptotically smaller than g(n), then f(n) is O(g(n)) but
g(n) is not O(f(n)) but So, for example, 3n2 + 17n is O(2n). But 3n2 is not
O(n+ 132). The big-O relationship also holds when the two functions have
the same dominant term, with or without a difference in constant multiplier.
E.g. 3n2 is O(n2 − 17n) because the dominant term for both functions has

2Naive methods of testing for primality, for example.

CHAPTER 14. BIG-O 172

the form cn2. So the big-O relationship is a non-strict partial order like ≤
on real numbers, whereas ≪ is a strict partial order like <.

When g(n) is O(f(n)) and f(n) is O(g(n)), then f(n) and g(n) are forced
to remain close together as n goes to infinity. In this case, we say that f(n)
is Θ(g(n)) (and also g(n) is Θ(f(n))). The Θ relationship is an equivalence
relation on this same set of functions. So, for example, the equivalence class
[n2] contains functions such as n2, 57n2 − 301, 2n2 + n+ 2, and so forth.

Notice that logs with different bases differ only by a constant multiplier,
i.e. a multiplier that doesn’t depend on the input n. E.g. log2(n) =
log2(3) log3(n). This means that logp(n) is Θ(logq(n)) for any choice of p
and q. Because the base of the log doesn’t change the final big-O answer,
computer scientists often omit the base of the log function, assuming you’ll
understand that it does not matter.

14.6 Applying the definition of big-O

To show that a big-O relationship holds, we need to produce suitable values
for c and k. For any particular big-O relationship, there are a wide range
of possible choices. First, how you pick the multiplier c affects where the
functions will cross each other and, therefore, what your lower bound k can
be. Second, there is no need to minimize c and k. Since you are just demon-
strating existence of suitable c and k, it’s entirely appropriate to use overkill
values.

For example, to show that 3n is O(n2), we can pick c = 3 and k = 1.
Then 3n ≤ cn2 for every n ≥ k translates into 3n ≤ 3n2 for every n ≥ 1,
which is clearly true. But we could have also picked c = 100 and k = 100.

Overkill seems less elegant, but it’s easier to confirm that your chosen
values work properly, especially in situations like exams. Moreover, slightly
overlarge values are often more convincing to the reader, because the reader
can more easily see that they do work.

To take a more complex example, let’s show that 3n2 + 7n + 2 is O(n2).
If we pick c = 3, then our equation would look like 3n2 +7n+2 ≤ 3n2. This
clearly won’t work for large n.

CHAPTER 14. BIG-O 173

So let’s try c = 4. Then we need to find a lower bound on n that makes
3n2 + 7n+ 2 ≤ 4n2 true. To do this, we need to force 7n+ 2 ≤ n2. This will
be true if n is big, e.g. ≥ 100. So we can choose k = 100.

14.7 Proving a primitive function relation-

ship

Let’s see how to pin down the formal details of one ordering between primitive
functions, using induction. I claimed above that 2n ≪ n!. To show this
relationship, notice that increasing n to n+1 multiplies the lefthand side by
2 and the righthand side by n + 1. So the ratio changes by 2

n+1
. Once n is

large enough 2
n+1

is at least 1
2
. Firming up the details, we find that

Claim 50 For every positive integer n ≥ 4, 2n

n!
< (1

2
)n−4.

If we can prove this relationship, then since it’s well-known from calculus
that (1

2
)n goes to zero as n increases, 2n

n!
must do so as well.

To prove our claim by induction, we outline the proof as follow:

Proof: Suppose that n is an integer and n ≥ 4. We’ll prove that
2n

n!
< (1

2
)n−4 using induction on n.

Base: n = 4. [show that the formula works for n = 4]

Induction: Suppose that 2n

n!
< (1

2
)n−4 holds for n = 4, 5, . . . , k.

And, in particular, 2k

k!
< (1

2
)k−4

We need to show that the claim holds for n = k + 1, i.e. that
2k+1

(k+1)!
< (1

2
)k−3

When working with inequalities, the required algebra is often far from
obvious. So, it’s especially important to write down your inductive hypothesis
(perhaps explicitly writing out the claim for the last one or two values covered
by the hypothesis) and the conclusion of your inductive step. You can then
work from both ends to fill in the gap in the middle of the proof.

CHAPTER 14. BIG-O 174

Proof: Suppose that n is an integer and n ≥ 4. We’ll prove that
2n

n!
< (1

2
)n−4 using induction on n.

Base: n = 4. Then 2n

n!
= 16

24
< 1 = (1

2
)0 = (1

2
)n−4.

Induction: Suppose that 2n

n!
< (1

2
)n−4 holds for n = 4, 5, . . . , k.

Since k ≥ 4, 2
k+1

< 1
2
. So 2k+1

(k+1)!
< 1

2
· 2k

k!
.

By our inductive hypothesis 2k

k!
< (1

2
)k−4. So 1

2
· 2k

k!
< (1

2
)k−3.

So then we have 2k+1

(k+1)!
< 1

2
· 2k

k!
< (1

2
)k−3 which is what we needed

to show.

Induction can be used to establish similar relationships between other
pairs of primitive functions, e.g. n2 and 2n.

14.8 Variation in notation

Although the concepts in this area are reasonable constant across authors,
the use of shorthand symbols is not. The symbol ∼ is used for many diverse
purposes in mathematics. Authors frequently write “f(n) is o(g(n))” (with a
small o rather than a big one) to mean f(n) ≪ g(n). And ≪ may be used
to mean big-O. Fortunately, the usage of big-O seems to be standard.

In computer science, we typically look at the behavior of functions as in-
put values get large. Areas (e.g. perturbation theory) use similar definitions
and notation, but with limits that tend towards some specific finite value
(e.g. zero).

In the definition of big-O, some authors replace 0 ≤ f(n) ≤ cg(n) with
|f(n)| ≤ c|g(n)|. This version of the definition can compare functions with
negative output values but is correspondingly harder for beginners to work
with. Some authors state the definition only for functions f and g with
positive output values. This is awkward because the logarithm function
produces negative output values for very small inputs.

Outside theory classes, computer scientists often say that f(n) is O(g(n))
when they actually mean the stronger statement that f(n) is Θ(g(n)). When
you do know that the bound is tight, i.e. that the functions definitely grow

CHAPTER 14. BIG-O 175

at the same rate, it’s more helpful to your readers to make this clear by using
Θ.

The notation O(f(n)) is often embedded in equations, meaning “some
random function that is O(f(n)). For enample, authors frequently write
things like n3 + O(n2), in which O(n2) is some unspecified function that
grows no faster than n2.

Very, very annoyingly, for historical reasons, the statement f(n) isO(g(n))
is often written as f(n) = O(g(n)). This looks like a sort of equality, but it
isn’t. It is actually expressing an inequality.

